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1. What is Fresnel zone plate for hard x-rays?

1.1. Introduction - a simple and intuitional explanation of Fresnel zone plate (FZP) -

It is difficult to use refractive optics in the hard x-ray regions, while the refractive lens is most

popular optics for visible light. This is because the index for refraction in the x-ray region is very near to

the index for refraction of vacuum. The refractive index of vacuum is defined as unity. The discrepancy of

refractive index from unity is only 10-5-10-6 for any materials. Therefore it is very difficult to deflect the

x-ray beam by refraction at the interface of optical media, and any optical devices that are used in visible

light optics, lens or prism, cannot be used for x-rays, as it is. Although, some refractive lenses or prisms

are developed in the hard x-ray region, they are still minority. At present, the Fresnel zone plate (FZP) is a

widely used and practical optics device in the x-ray regions, the x-ray energy around 10 keV or higher

energy regions. The micro-focus beam size of about 25 nm is already achieved with the FZP optics in the

hard x-ray region.

The Fresnel zone plate is a concentric transmission grating with radially decreasing grating

period, as schematically shown in Fig. 1.1, coarse grating period at central part, and finer pitch at the

outer (marginal) area. An optical micrograph of FZP is shown in Fig. 1.2. This is a real Fresnel zone plate

used as micro-focusing optics or image forming optics at the SPring-8 beamlines.

Fig.1.1. Schematic drawing of FZP structure. The radius of n-th ring is defined by rn = √(nλf). λ is x-ray

wavelength and f is focal length.
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Fig. 1.2. An optical micrograph of FZP used at the SPring-8 imaging beamlines as microfocus lens and/or

microscope objective lens. The diameter of FZP is 100 µm and the outermost zone pitch (period) is 0.5

µm. The focal length of the FZP is designed to be 248 mm for 1.0 Å (12.4 keV) x-rays. The zone

structure is made of 1 µm-thick tantalum deposited on a 2 µm-thick silicon nitride membrane. The FZP is

fabricated by electron beam lithography and reactive dry-etching process at the NTT Advanced

Technology, Japan. This FZP will be used in our experimental course.

In order to understand the FZP optics intuitionally, it is useful to start from two-slit optics, so

called Young’s double-slit. The two-slit is a most simple and basic tool in wave optics. As shown in Fig.

1.3, when a pair of slit is placed with a distance of d, intensity distribution on a screen far from slit has

periodic structure. When the observation angle θ satisfy an equation, nλ = d sin θ, the intensity is

maximum, and minimum is observed at (n + 1/2)λ = d sin θ. Here, n is an integer number called order of

diffraction. If the incident radiation is perfectly coherent and the slit width is negligibly narrow, the

observed intensity distribution must be sinusoidal! But the perfect coherence is not realistic in general

experimental condition. Therefore, the actual interference pattern becomes weak far from optical axis, as

shown in Fig. 1.3.

λ=2d sinθ

ｄ
 θ

Intensity
distribution Two-slit

Fig. 1.3. Schematic diagram of Young’s two-slit experiment and its interference pattern. Gaussian type

spatial coherence is assumed for numerical calculation of interference pattern.

Next, let us consider diffraction by grating: a periodic slit array. As shown in Fig. 1.4, the beam

deflection angle at a grating with a period of d is described as sin θ = nλ/d, where n = 0, ±1, ±2, ±3,. The

integer n is also called order of diffraction. The n = 0 is undiffracted beam.



5

n = 0
n = +1

n =-1

n = +3

n = -3

d

θ

λ

λ = d sin θ

Fig. 1.4. Linear grating and diffraction pattern by the grating. The intensity distribution (diffraction

pattern of grating) is given by the Laue function as sin2(πNdsinθ)/sin2(πdsinθ), where N is number of

grating period. Even order diffractions, n = 2, 4, 6,,, are not allowed for 1:1 ratio of obstacle and

transparent area, and higher order diffractions are generally weaker than the fundamental diffraction.

When the grating period varies as d = λ/sinθ, as shown in Fig. 1.4, all the diffracted rays are

focused at a point, where θ is determined by tanθ = r/f, and the r is radius of circular grating, and f is a

specific distance from zone plate.

 f

r

θ

Fig. 1.5. Diffraction at Fresnel zone plate (schematic diagram), and focus of x-ray beam.

The specific length f is called focal length. Assuming θ << 1 (this condition is usually satisfied in

the hard x-ray region), diffraction condition, dθ ~ λ, for nth ring can be written as

(rn+1 - rn-1) rn / f ~ λ,

where, θ ∼ rn /f, and d ~ (rn+1 - rn-1). Then, regarding the above equation as a differential equation,

following equation is obtained.

2∂r(n)/∂n = λf / r(n).           
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By solving the above equation, we can get an equation for Fresnel zone plate structure as

rn
2 ~ nλf + Constant,           

generally Constant = 0, and rn = (nλf)1/2.

This is only an approximation, because the above discussion is valid only for large n and small diffraction

angle. However, this intuitional explanation is very useful for understanding the geometrical

characteristics of FZP optics.

As is understandable from these considerations, there are positive and negative orders of

diffraction. Thus, the zone plate acts as a convex lens for visible light, and it simultaneously works as a

concave lens with negative order diffraction. Furthermore, 0th order and higher order diffractions usually

exist. Therefore, a kind of spatial filtering is indispensable in FZP optics to work as an optical lens. A

typical method of selecting a required order of diffraction is putting a small diaphragm near the focal

point. When the diameter of aperture is sufficiently smaller than the FZP diameter, the undesired order of

diffractions including direct beam are suppressed enough. If the suppression is not sufficient, an

additional beam stop disc may be used for diffraction order selection as shown in the figure. This beam

stop disc is usually added in fabrication process of FZP, and it is called center stop, or center obstacle.

The aperture near the focus is called order-selecting-aperture (OSA), or sometimes order-sorting-aperture.

When a central beam stop of diameter r0 is used, the zone plate structure can be modified as

rn
2 ~ nλf + r0

2.           

Above formula is widely used for general FZP that is fabricated together with central beam stop disc.

Then, the first zone starts from r0, and the inner radius of second zone radius is r1 = (λf + r0
2) 1/2.           

Fresnel Zone Plate

Center Beam Stop

Order-selecting Apperture

Focus

Fig. 1.6. Diffraction-order-selection in FZP microbeam optics.
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1. 2. More precise treatment of FZP optics

The exact equation of FZP structure is obtained by optical path difference and expansion of

Fermat’s principle. The Fermat’s principle is that an actual optical path between any two points should be

shorter than any other paths that connect the two points. By considering the finite wavelength of λ, the n-

th zone boundary of a Fresnel zone plate that focuses the spherical wave emitted from point A to the point

B is expressed by the following equation,

(Ra + Rb) = nλ/2 + (a + b),

as shown in Fig. 1.7, and

(a2 + rn
2) 1/2 + (b2 + rn

2) 1/2 – (a +b ) = nλ/2,  (1.1)

where a is a distance from point A to the FZP, b is a distance between B and FZP, and rn is n-th boundary

of zone structure, and n is integer. This formula is a basic and exact equation of Fresnel zone structure.

Expanding with rn and neglecting higher order terms, the equation (1.1) is rewritten as

a + rn
2/2a + b + rn

2/2b – (a + b) = nλ/2. (1.2)

Then,

rn
2/a + rn

2/b = nλ. (1.3)

Again, by defining 1/a + 1/b = 1/f, the equation (1.3) is rewritten as

rn
2 = nλf. (1.4)

The equation, 1/a + 1/b = 1/f, is well-known Newton’s lens equation. Thus, an FZP whose zone boundary

is defined by the above equation works as a lens with a focal length of f.

When the incident beam is plane wave, the equation (1.1) is simplified as

(f2 + rn
2) 1/2 – f = nλ/2,  (1.5)
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Then, the zone structure is represent by

rn
2 = nλf + n2λ2/4.  (1.6)

Comparing with eq.(1.4), there is an additional term, n2λ2/4, which represents spherical aberration. The

most of FZPs are generally designed as the spherical aberration is negligible for f >> nλ/2. Then, the

number of Fresnel zone is restricted by this condition.

A B

Ra Rb

 a  b

rn

Fig. 1.7. Optical path description of Fresnel zone plate

1.3. Diffraction efficiency of FZP

The diffraction efficiency is an important characteristic of diffraction-based optics, because the

intensity of focused beam is mainly determined by the diffraction efficiency, and the diffractive optics

such as FZP or grating can gather only a portion of incident radiation. The diffraction efficiency of FZP is

equivalent to the linear grating. Therefore, we can calculate it by solving one-dimensional Kirchhoff’s

integral for single period of gating. For instance, first order diffraction of opaque and transparent zone

structure with 1:1 zone ratio, the intensity of diffracted beam is given by

I = |E|2, and E = ∫ C * exp (ik x sinθ) dx,

Here, the integral is taken for one cycle, d, of grating, and 2π/k = λ = d sin θ. The constant C = 1 for

transparent area, and C = 0 for opaque zone. Then, for the first-order diffraction,

E = ∫ exp (2πi/d) dx = 2

By normalizing with the incident beam intensity of (2π)2, I = 4/(2π) 2 (=1/π2 ~ only 10% for 1st-order

diffraction). The general form for n-th order diffraction can be easily calculated by the similar manner. It
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is known that the n-th order diffraction efficiency for transparent and opaque zone, i.e., black and white

zone, with even zone width (1:1 zone ratio) is 1/(nπ) 2, where n = ±1, ±3, ±5,. The even order diffraction

does not exit for the grating with 1:1 groove width.

More efficient grating is realized by the phase-modulated structure that is a utilization of phase

shift through the zone, instead of stopping the beam with opaque zone. The maximum diffraction

efficiency is attained at a optical path difference of half wavelength (phase shift of π). The efficiency of n-

th order diffraction for ideal phase grating of 1:1 zone ratio is 4/(nπ) 2 (n = ±1, ±3, ±5,,,,. ). So, the first

order diffraction has an efficiency of about 40% in the case of ideal phase-modulated zone plate.

However, in the x-ray region, pure phase medium without absorption dose not exist. All the optical media

are complex of phase and absorption effect.

More efficient FZP can be made by using so-called kinoform structure, that is recently introduced

in hard x-ray regions. Optimized kinoform FZP can give nearly 100% efficiency, if the absorption loss

can be ignored. Real diffraction efficiency is lower than 100%, but the diffraction efficiency of higher

than 50% is already achieved in the hard x-ray region with quasi-kinoform structure.

Fig. 1.8. Schematic diagram of kinoform zone plate. The structure and characteristics is essentially the

same as Fresnel lens in the visible light region.

1.4. Fabrication of zone plates:

Most of zone plate for x-ray microscope is fabricated by using a state-of-art technology developed

in semiconductor technology, i.e., electron-beam lithography technique. Recent ULSI technology makes

it possible to fabricate sub-100 nm microstructure on a silicon tip. This is also a key technology in x-ray

microscopy. Major vender of x-ray FZP is NTT Advanced Technology (http://www.ntt-at.com/prdsvc/x-

ray_euv_opticssystem.html) and Xradia (http://www.xradia.com/). At present, x-ray FZPs with an

outermost zone width of about 25 nm are commercially supplied by either company. Schematic drawing

of cross sectional structure is shown in Fig. 1.9. The zone plate pattern is drawn by electron-beam to the

resist on thin membrane on silicon wafer. The thin membrane is usually a few µm-thick silicon nitride or

silicon carbide. The pattern transfer from photo-resist to zone material is done by reactive dry-etching
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process or by wet electroplating process (usually, dry-etching is used for tantalum, and electroplating is

employed for gold pattern). Finally, the silicon wafer of pattering area is removed by chemical etching

process, as shown in the figure.

Zone Plate
Supporting Membrane

Silicon Wafer

Fig. 1.9. Structure of Fresnel zone plate. Cross-sectional view and SEM micrograph.

The difficulty on fabrication of x-ray zone plate is high aspect ratio (zone-height/zone-width) of

zone structure at the marginal zone area. In the hard x-ray region, the phase shift is much greater than the

absorption contrast even for the high-Z elements. Therefore, most of the x-ray FZPs is designed as a

phase-modulation zone plate. Assuming a free electron approximation, the real part of index for refraction,

n, for x-rays is written as

Re(n ) = 1 – δ,

δ = 1.35 x 10-6 ρ(g/cm3) λ (Å)2,

where ρ is density of material, and Z/A = 1/2 is also assumed (Z: atomic number, A: atomic weight). The

optimum thickness of zone plate, t, is equivalent to the optical path difference of λ/2, that is calculated by

tδ = λ/2. Then, high dens material is preferable for zone plate. Considering the manufacturing process of

microstructure, gold or tantalum is usually chosen as a zone material for hard x-ray FZP. The optimized

thickness and δ for tantalum zone plate, for instance, is 2.9 µm and 1.71 x 10-5 at an x-ray wavelength of

1.0 Å, respectively. Then, the aspect ratio should be 29 for the FZP having 100 nm-zone-width. The
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required aspect ratio is still challenging even in the present nano-fabrication technology. The resolution

limit of FZP (width of outermost zone) is being improved year by year, and the finest zone structure of

about 20 nm is possible at present. However, the thickness of these high resolution FZPs is far from ideal

value for hard x-rays.
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2. Making microfocus beam with Fresnel zone plate

2.1. Limitation of focused beam size. Diffraction limit and geometrical limit of resolution

The microbeam optics is to demagnify the light source image with an optical lens or mirror.

Therefore, the generated microbeam size is firstly determined by the magnification ratio and source size,

i.e. geometrical definition. However, there is another significant limitation on beam focusing, which is

limitation due to diffraction of wavefield.

 Ultimate spatial resolution (focused beam size limit) of imaging optics is determined by the

diffraction of light. The diffraction-limited resolution is deduced from the uncertainty principle in

quantum mechanics. If a photon is squeezed within a small space of <Δx>, the momentum uncertainty of

photon, <Δp>, is given by the following formula,

<Δx> <Δp> ≥ h/2π,

where h is the Plank constant. Consequently, larger spread of momentum is required to focus (localize) a

photon within a smaller area. This is a fundamental limitation of microfocus beam size. The momentum

of photon is given by a formula, p = h/λ, and the uncertainty of momentum is related to the angular

spread of momentum. As shown in the figure, when a parallel incident beam is focused by a lens, the

angular spread of focused-photon’s momentum becomes (h/λ)sinθ, and momentum uncertainty becomes

Δp = ± (h/λ)sinθ. Then the limit of focused beam size, Δx, can be written as

Δx ≥ 2h/(2πΔp) ~ λ/(πsinθ),

The term, sinθ is known as numerical aperture (NA) of lens. The F-number defined by F = 1/tanθ is

usually used in optical instruments instead of NA. In the hard x-ray region, the NA << 1, and sinθ is

approximately equal to rN/f, where the rN is radius of outermost zone.

This discussion is one-dimensional case, and we cannot get an exact form of intensity distribution.

The lens optics, including FZP optics, is an axis-symmetric system. For the axisymmetric optical systems,

the formula of resolution limit is slightly deformed as

∆x = 0.61 λ/NA,

This definition is well known Rayleigh’s criterion for spatial resolution of microscope with an objective
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lens of circular aperture. This formula was obtained by a classical diffraction theory for electromagnetic

wave, far before the birth of quantum physics, but essentially the same as that derived from quantum

mechanics. This relation comes from a definition of quantum photon momentum, p = h/λ.

θ

NA = sinθ 

P = h/λ

ΔP 
= P sinθ = h/λ sinθ

Lens

Fig. 2.1. Numerical aperture of objective lens.

The diffraction limit can also be explained by a simple diffraction theory for single slit, as

described below. When a parallel and monochromatic beam is incident on a slit with an opening of w (one

dimensional case), the propagating wave through the slit is not a parallel wave anymore.

Using the Kirchhoff-Huygens’ principle, the electromagnetic wave field is given by an integral formula of

E(θ) = ∫ exp (ik x sinθ) dx

Here, k is a wave number defined by k = 2π/λ. Taking a integral over the slit opening, the amplitude of

electromagnetic wave far from the slit is given by the following function.

E = sin (kw/2 sinθ) / (kw/2 sinθ).

The function (sinX)/X is the sinc function which frequently appears in the diffraction theory. The beam

intensity far from slit takes maxima on the optical axis (θ = 0), and first zero (local minimum) at

(kw/2 sinθ) = π,

 or  λ = w sinθ ~ wθ,

because w is usually much greater than wavelength in the hard x-ray region. Thus, the angular spread

(blurring) of the propagating wave is broadened by passing a slit. It is equivalent that a finite angular

convergence of incident beam is required to focus the beam within a limited area. Saying differently,

focusing a photon beam is always accompanied by a finite divergence of outgoing wave. This result of the

diffraction theory of electromagnetic wave is essentially the same as the uncertainty principle in the
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quantum physics.  

θw

Intensity distribution

Fig. 2.2. Diffraction by a single slit. Radiation through the slit is broadened by propagating in a free

space.

It is also apparent from the diffraction by a grating that the sinθ is equal to λ/d, where d is the

outermost zone period of FZP. Then, for the circular grating (FZP without center stop), the diffraction-

limited resolution is defined as

Δx = 0.61d.

A formula of Δx = 1.22 drN is frequently used instead of above equation, where drN is a half pitch of the

outermost zone period (or width of outermost zone). Then, the ultimate limit of the focused beam size is

nearly equal to the width of outermost Fresnel’s zone of the objective FZP. This relation can also be

derived from the Fresnel zone plate equation and the formula of diffraction-limited resolution.

However, the actual focus is generally limited by the quality of incident beam. We have implicitly

assumed a parallel beam for explaining how the FZP works as a beam-focusing device. But, in any light

sources, the emitted radiation is neither a perfect plane wave nor a perfect spherical-wave. The radiation

is emitted from a finite source area, and is emitted in random direction, i.e. a chaotic source! In this case,

the beam focusing should be considered as generation of a demagnified image of the light source. This

limitation of focused beam size is known as the geometrical optics limit. This operation of microfocusing

optics is similar to that of telescope optics. As shown in Fig. 2.3, the light source image is formed at focus

by a magnification factor of b/a according to the Newton’s equation. Then the focused image size, Sb, is

given by

Sb = Sa b/a,

where Sa is source dimension, a is source to lens distance, and b is lens to focus distance. Usually a >> b,
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then b ~ f. A long distance from source point or a small source size is necessary to achieve small (micro)

focus beam. The factor Sa/a is sometimes called angular size of light source. In most synchrotron

radiation facilities, the angular size is not small enough to generate microfocus beam, and the distance is

limited by beamline length. So, we need to makeup a virtual source by putting a small pinhole (or slit) at

the upstream section of the beamline. The slits equipped at beamline, front-end slit or transport-channel

slit, are usually used as the virtual source for micro-focusing experiment. It is also important that there are

no disturbances of wave front by the optical elements in the beamline. The monochromator crystals,

mirrors, and vacuum windows usually tend to give serous deformation of the x-ray beam direction and the

wavefront shape.

a

 f

b

Sa

Sb

Fig. 2.3. Geometrical description of beam focusing optics

2.2. Depth of focus and chromatic aberrations - a geometrical approximation -

If the wavelength is slightly different from designed value, the focus slightly moves on the optical

axis. That means different wavelength x-rays are focused at a different position. The focal length f varies

inversely as the wavelength of x-rays. These phenomena are called chromatic aberrations. Therefore,

monochromatic x-ray beam is required for FZP microbeams. Saying differently, the FZP microbeam

optics can be used as a monochromator or spectrometer. From a practical point of view, an important

feature of microbeam optics is a tolerance of focal point, e.g. the distance where the beam size is nearly

equal to that at the exact focus. This tolerance is named depth of focus.

Geometrical beam size at a distance of Δf from the exact focus can be calculated to be 2NA Δf, as

shown in Fig. 2.4. This value should be smaller than the diffraction-limited resolution in order to achieve

the full-performance of FZP optics. Then the condition can be written as

0.61 λ/NA ≥ 2NA Δf,  

Considering both side from focus, the depth of focus is written as

 Δf ~ ±0.3 λ/(NA)2.
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Or using the FZP equation, we can get a simple and useful formula, as

0.61/(2N) ≥ Δf/f.

Here, N is number of Fresnel zone.

The chromatic aberration is also estimated by similar manner, because Δf/f = -Δλ/λ from the FZP

equation. So, the chromatic aberration is characterized by the number of Fresnel zone, N.

θ

NA = sin θ

Δf

2NAΔf 

Fig. 2.4. Depth of focus

2.3. Preservation of emittance and brilliance

An important law, emittance preservation rule, in beam-focusing optics is described in this section.

As shown in Fig. 2.5, when a magnified (or demagnified) image of light source is formed by an optical

element, there is a relation between the image dimension, Sa, Sb, and angular spread, θa, θb as

Sa θa = Sb θb .

The product of beam dimension and angular spread, Sθ, is called the beam emittance, and the above

formula represents the emittance preservation rule. This emittance preservation is deduced from the

geometrical optics. The efficiency of optical system is not 100%, even if a perfect lens (without any

aberrations) is used. This is because the focus beam size is limited by the diffraction. Therefore, the

equation should be rewritten as

Sa θa ≤ Sb θb , for general optics.

If the absorption loss at optical system is ignorable, the flux of focused beam, Ib, is equal to the flux of the

incident radiation, Ia, as
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Ib ≤ Ia

and Ib = Ia for ideal case.

Then, flux, I, divided by the source dimension, S, and the angular divergence, θ, is constant as

Ib, / (Sb θb) = Ia / (Sa θa), for the ideal optics.

This relation is called brilliance preservation rule, and the flux density limit of focused beam is

determined by this equation. The flux density of the focused beam is generally higher than that of the

unfocused beam, where the unfocused beam is a microbeam generated simple by putting a micro-pinhole

in front of sample. Although, the beam intensity seems to increase by focusing, there is no real gain of

beam brilliance. The brilliance is always preserved in any ideal optical systems, and the actual brilliance

always decreases by passing through the optical element, because the throughput, reflectivity of mirror or

diffraction efficiency of gating and FZP, is always less than 100%. Please remember that any optical

systems decrease the brilliance, and increase the emittance. The highest brilliance is obtained only at the

initial source point without any optical devices! This is an important principle of beam focusing optics.

a b

θa θb

Light Source Focus

Sa Sb

Lens

Fig. 2.5. Schematic diagram of emittance preservation rule

2.4. General description of focusing optics

In the above sections, we focused only on the Fresnel zone plate optics for x-ray focusing.

Even in the x-ray regions, various types of beam focusing, or imaging, devices are developed, such as

total reflection mirrors, multilayer mirrors, Bragg Fresnel lenses, multi-layer Laue lenses, etc. These

optical elements are, however, able to be described by a simple form of extended Fermat’s principle.

His (Fermat’s) idea is this: That out of all possible paths that it might take to get from one point to

another, light takes the path which requires the shortest time (the least possible time),

And an application of the Fermat’s principle is that,

We want to bring all the light back to what we call a focus. How? If the light always takes the path of
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least time, then certainly it should not want to go over all these other paths. The only way that the light

can be perfectly satisfied to take several adjacent paths is to make those times exactly equal! (Lectures on

Physics by R. Feynman) Then, with wavelength λ of light, all the different paths with optical path

difference of nλ are also allowed as shown in Fig. 2.6.

The Pn represents ellipse with foci F1 and F2. The ellipse is an ensemble of points that have

the property that the sum of the distances from two points is a constant. A plane ellipse is used for one-

dimensional focusing, and ellipse of rotation (ellipsoid) for 2D focusing. A single ellipse or ellipsoid, for

example, represents total-reflection-mirror optics. All kinds of beam focusing optical system can be

understood using the formula of

Pn = P0 + nλ,

where n is integer, and λ is wavelength. P0 is an ellipse with foci F1 and F2. Now, the Fresnel zone plate

can be regarded as an approximation of ellipsoids that consists of only the pints on a plane S1 that is

normal to the optical axis. The S2 and S3 represent Bragg Fresnel lens. The S2 also represents an

approximation of self-focusing grating. The total reflection mirror system is represented by a shell of

ellipse or ellipsoid. The multi-layer Laue lenses and multi-layer mirrors can also be understood as a three-

dimensional structure that consists of ensemble of ellipses or ellipsoids. Therefore, all the optical devices

utilizing reflection or diffraction, except for refractive lens, are only an approximation of the nesting

ellipse shown in the figure. The ellipse and ellipsoid should be replaced by parabola and paraboloid for

parallel beam or a point source at infinite distance, and hyperbola and hyperboloid for convergent beams.

Fig. 2.6. General description of focusing optics.
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3. Application of FZP optics to imaging microscopy and microtomography

3.1. X-ray imaging microscopy

The limitation of spatial resolution for conventional imaging system such as projection imaging is

usually determined by spatial resolution of imaging detector. The development of high-resolution

detectors, spatial resolution of µm – nm, is very difficult task in the hard x-ray region. Although, high-

resolution photo-resists for x-ray lithography have spatial resolution better than 100 nm, they cannot be

applied to general use, because linearity of the photo-resist is insufficient, and real-time image-processing

is usually required in microscopy.

There is another limitation of projection imaging. Geometrical optics approximation is assumed in

projection imaging and contact microscopy. This assumption is generally valid for the medical imaging

instruments because of short wavelength (~0.2 Å) and low spatial resolution (~mm). However, even in

the hard x-ray region, diffraction at the object cannot be ignored for high-resolution imaging. The spatial

resolution of measured image is deteriorated by the diffraction of x-rays that occurs within the object

itself. Image blurring due to Fresnel diffraction of x-rays cannot be neglected in the high-resolution

imaging. The amount of blur for Fresnel diffraction is approximately (λL)1/2, where λ is x-ray wavelength.

The L represents the distance between sample and detector in the case of contact microscopy, and it

corresponds to the distance from source point to sample in the case of projection imaging with a spherical

wave from small point source, i.e. cone beam projection imaging with high magnification. When λ = 1 Å

and L = 1 cm, the image blur becomes 1 µm. Therefore, high-resolution imaging is difficult, if simple

projection imaging scheme is used. Microscopy in combination with the holographic image

reconstruction is provably only an exception.

The use of x-ray imaging optics is one of the best ways to overcome this problem. By using the x-

ray high-magnification imaging-objective optics, the influence of Fresnel diffraction and limitation of

imaging detector can be solved. Then, the ultimate limit of spatial resolution is thickness of specimen.

Image blurring caused by the beam deflection inside of the object is now expressed as (λL)1/2, where the L

now represents the thickness of specimen. This limitation is related to the depth of focus of objective lens.

The zone plate optics is widely used in the hard x-ray microscopy, and spatial resolution of better than 50

nm is already achieved in the hard x-ray region with the FZP objective. The imaging property of FZP

objective is very suitable for hard x-ray microscopy, because off-axis aberrations of FZP optics are

usually negligible in hard x-ray region..

3.2. Order selection by spatial filter and illuminating optics for FZP objective
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As described in the previous section, the FZP cannot be used as conventional refractive lens

because of existence of undesirable diffractions. A simple way of diffraction order selection is shown in

Fig. 3.1. The object and objective is illuminated by a planar wave with a cross-section limited by a

diaphragm, and only a half of FZP objective is illuminated. Then, positive order diffraction and negative

order one is well separated at the image plane, and the direct beam appears at the boundary between the

positive diffraction and negative diffraction. The optical system shown in Fig. 3.1 is called off-axis

illumination. The configuration shown in the figure cannot separate higher order diffraction. Additional

spatial filters are needed for perfect order-selection. However, higher order diffraction has much low

efficiency and large magnification at the image plane. Therefore, higher order diffraction is usually

ignorable. The serious problem of off-axial illumination is non-uniformity of imaging property, i.e. strong

edge-enhancement in the marginal region of image field. Therefore, illumination and spatial filtering

combining with condenser optics is commonly used in imaging microscopy with FZP objective. There are

typically two types of illumination optics for imaging microscopy, critical illumination and Köhler’s

illumination.

The schematic diagrams of critical illumination and Köhler illumination are shown in Fig. 3.2a and

3.2b, respectively. The critical illumination, however, is not suitable for synchrotron radiation light source,

because the synchrotron radiation light source has small source dimension and narrow divergent angle. In

the critical illumination, a demagnified image of the source is formed at the object plane by the condenser

lens. Then, the typical field of view becomes only a few µm – submicron in the general synchrotron

radiation beamlines. Therefore, in the critical illumination, additional technique, such as scanning the

condenser FZP during the exposure time, is employed for attaining uniform field of view. On the other

hand, the condenser optics for the Köhler’s illumination does not generate the demagnified image. A

constant angle deflection is done by the condenser lens optics, and the deflected beams are merged

together in the field of view of objective lens. The Köhler illumination results in a hollow cone beam

behind the objective, as shown in the figure. The condenser optics for Köhler’s illumination can be

realized by using a constant period zone plate with a center beam stop (not a Fresnel zone plate) or by

using a rotating double-mirror mechanism. It is important that, using the hollow cone illumination, the

order selecting is also achieved simultaneously. Only the first order diffraction appears in the center circle

defined by the hollow cone beam.
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FZP
+1st diffraction

Direct

-1st diffraction

Fig. 3.1. Order-selecting for plane wave illumination. Only a half of FZP aperture is illuminated.

Condenser lens

Beam stop

Objective FZP

Object Image

Fig. 3.2a Critical illumination with condenser zone plate and objective zone plate. Hollow cone

illumination is used for diffraction-order-selecting.

Condenser lens

Beam stop

Objective FZP

Object Image

Fig. 3.2b Köhler’s illumination with condenser zone plate. Hollow cone illumination is also achieved by

combination with a center beam-stop and an aperture in front of object.

3.3. Spatial resolution of FZP microscopy with illuminating optics

Spatial resolution of imaging optics is essentially determined by the diffraction of light. That is the

same as that of microfocusing optics. The diffraction-limited resolution for microscope with an objective



22

lens of circular aperture (axis-symmetric optics) and incoherent illumination (for example, spontaneous

light-emitting object) is expressed by the well-known Rayleigh’s criterion as

∆ = 0.61 λ/NA, (3.1)

Where NA is so-called numerical aperture of objective lens defined as NA = sinθ. Here, the θ is the angle

between marginal ray and optical axis, as shown in Fig. 3.3. It is also apparent from the diffraction of

linear grating that the sinθ is equal to the λ/d, where d is the outermost zone period of FZP. Then,

∆ = 0.61d.

A formula of Δ = 1.22 drN is frequently used, where drN is a half pitch of outermost zone period (or width

of outermost zone). This is the same as that of micro-focusing optics.

Thus, the spatial resolution is, in principle, limited by the numerical aperture of objective lens, and

the limitation is simply described by the diffraction theory as same as that of microbeam optics. However,

when condenser lens optics is used, the spatial resolution is determined not only by the NA of objective

but also by the convergent angle of illuminating beam. This is called matching of numerical aperture.

When the convergent angle is equivalent to the NA of objective lens, the spatial resolution is equal to that

defined by the equation (3.1). The best resolution is achieved, when the NA of condenser is 1.5 times that

of the objective lens. In this condition, the spatial resolution becomes ~0.57λ/NA. When the condenser

optics is not used, i.e. in the case of plane wave illumination (coherent illumination), the spatial resolution

is written as 0.82λ/NA instead of 0.61λ/NA, as well.

θ

NA = sin θ

Fig. 3.3. Numerical aperture of objective lens.

3.4. Depth of focus

Hard x-ray microscopy has an advantage that thick samples can be observed in high spatial
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resolution for its high transmissivity and depth of focus. Although the depth of focus in hard x-ray

microscope is generally much greater than that of optical microscope, the restriction by depth of focus is

sometimes not negligible. The depth of focus can be evaluated by the geometrical optics, as shown in Fig.

3.4. When a point source is placed at a distance of D from the exact object plane, the image size extracted

at the object plane is expressed as 2DNA. The amount of defocusing, 2DNA, should be less than or equal

to the diffraction-limited resolution in order to neglect the influence to spatial resolution. By taking the

both side of object plane into account, the depth of focus, 2D, is expressed by

2D = 0.61λ/NA2. (3.2)

Differently speaking, the NA of objective determines the ratio of field of view and spatial resolution. For

an example, when λ = 1 Å, and NA = 10-3, the diffraction-limited resolution is 61 nm, and the limit of

sample thickness is 61 µm in diameter. It should be noted that the restriction on the depth of focus

expressed by the equation (3.2) is essentially the same as the ultimate limitation on spatial resolution for

finite sample thickness, ∆ ~ (λL)1/2, where L is thickness of sample.

NA = sin θ

D

θ
2NAD 

Fig. 3.4 Depth of focus. Black line represents primary focus, and blue line is marginal path of defocused

rays.

The depth of focus is also defined by using Rayleigh’s quarter wavelength criterion. The λ/4 rule is

that, when the optical path discrepancy from the primary path is within one quarter of wavelength, the

influence of wave-front aberration to the spatial resolution may be ignored. As shown in Fig. 3.5, when an

initial focus is ideal, the wave front at objective is exact sphere with a radius of f. Then, applying cosine

law to the marginal ray track,

L2 = f2 + D2 + 2Df cosθ.      (3.3)
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Eq (3.3) can be written as

L2 – (f + D) 2 = 2Df (cosq –1).

And, then

{L – (D + f)}{L + (D + f)} = 2Df (cosθ –1).

Ignoring higher order, {L + (D + f)} ~ 2f, and (cosθ – 1) ~ -θ2/2. Therefore, eq. (3.3) can be rewritten as

L – (D + f) ~ -Dθ2/2. (3.4)

The length (D + f) is optical path length of primary ray, and L is optical length of marginal ray for the

defocus point at a distance D from initial focus. Therefore, the λ/4 rule is described as

|L – (D + f)| ~ Dθ2/2 < λ/4.

The angle θ is approximately equal to the numerical aperture NA, because θ << 1 in the x-ray region.

Therefore, by taking the both side of object plane into account, the depth of focus, 2D, is now expressed

by

2D ~ λ/NA2. (3.5)

This evaluation of depth of focus is slightly different from the value given by eq (3.3). However, these

definitions are essentially the same. The definition of eq (3.5) is generally used in microscopy optics.
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 NA = sin θ

D

θ

Objective Lens

L

 f

Fig. 3.5 Depth of focus defined by Rayleigh’s quarter wavelength criterion. Red line indicates ideal wave

front from point image at focus. Black lines represent primary focus, and blue lines are marginal path of

defocused rays.

3.5. Chromatic aberration and spherical aberration

In above discussion, perfectly monochromatic x-ray beam is assumed. However, real x-ray beam

has some bandwidth, even if the high-performance monochromator is used. The influence of the finite

bandwidth of incident x-ray spectra is called chromatic aberration. The defocusing effect by the chromatic

aberration is evaluated by the similar manner as that of depth of focus, as

Δf NA < 0.61λ/NA. (3.3)

Here, Δf is a displacement of focus caused by chromatic aberration. The focal length is defined by rn
2 =

nλf. Here, the rn is constant for given FZP, and the focal length, f, is proportional to 1/λ. Then, the

difference of focal length Δf is written as

Δf /f = Δλ/λ, (3.4)

where Δλ is bandwidth of incident radiation. Then, the equation (3.3) can be rewritten as

Δλ/λ f NA < 0.61λ/NA. (3.5)

By using approximation of NA ~ rN/f and rN
2 = Nλf, where N is the zone number of outermost zone, a
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useful formula is deduced as follows,

Δλ/λ < 0.61/N.

This formula gives a tolerance on bandwidth of incident x-ray beam for FZP microscope.

The spherical aberration comes from the approximation used to derive the equation (1.2). By using

second higher order term, the equation is approximately rewritten as

rn
2/2a – 1/8rn

4/a3 + rn
2/2b –1/8rn

4/b3 = nλ/2. (3.6)

In the case of imaging microscope, a << b, and a ~ f. Then, the equation (3.6) can be written as

rn
2/2a + rn

2/2b –1/8rn
4/f 3 = nλ/2. (3.7)

In order to evaluate the wave-front aberration, a Rayleigh’s quarter wavelength criterion can be used. By

comparing the equation (1.2) and equation (3.7), the λ/4 rule for the spherical aberration is expressed by

1/8rN
4/f 3 < λ/4. (3.8)

Using the fundamental structure of Fresnel zone plate, rN
2 = Nλf, the relation is rewritten as

1/2N 2 < f / λ. (3.9)

This formula also gives a limitation on the number of outermost zone as well as the chromatic aberration.

Although the spherical aberration can be perfectly erased by using the exact formula of equation (1.1),

these zone plates can be used only at the fixed wavelength (λ) and fixed optical distances (a and b). These

FZPs do not have flexibility. The FZPs defined by the conventional formula of equation (1.4) are much

convenient for practical use.

3.6. Off-axis aberration theory based on wave optics

In this section, off-axis imaging property of FZP microscope is discussed. The optical path

equation is written as
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{(ra – rn cosφ)2 + (rn sinφ) 2 + a2}1/2 + {(rb + rn cosφ) 2 + (rn sinφ) 2 + b2}1/2

= nλ/2 + (a2 + ra
2 ) 1/2 + (b2 + rb

2) 1/2,  (3.10)

where ra/a = rb/b, as shown in the figure, and rb/ra (= b/a) represents the geometrical magnification of

microscope. The φ is angle at a point of Fresnel zone plate objective as shown in Fig. 3.5. The influence

to spatial resolution is evaluated by the similar manner as that on the spherical aberration. By using the

second order approximation, the equation (3.10) is rewritten as

1/2(ra
 2 – 2 ra rn cosφ + rn

 2)/a - 1/8(ra
 2 – 2 ra rn cosφ + rn

 2) 2/a3

+ 1/2(rb
 2 + 2 rb rn cosφ + rn

 2)/b - 1/8(rb
 2 + 2 rb rn cosφ + rn

 2) 2/b3

= nλ/2 + 1/2(ra
 2/a) - 1/8(ra

 4/a3) + 1/2(rb
 2/b) - 1/8(rb

 4/b3).  (3.11)

Then, the wavefront aberrations are analyzed by the optical path equation (3.11), and the Rayleigh’s

quarter wavelength rule is expressed as

|{- ra rn cosφ/a + rb rn cosφ/b} +1/2{ rn
 2/a + rn

 2/b –nλ}

-1/8{(ra
 2 – 2 ra rn cosφ + rn

 2) 2/a3 - ra
 4/a3 + (rb

 2 + 2 rb rn cosφ + rn
2) 2/b3 - rb

 4/b3}|

< λ/4. (3.12)

The first term represents the magnification equation of ra/a = rb/b, and the second term corresponds to the

basic zone plate equation of rn
2 = nλf. Then, the residual aberration is rewritten as

|1/8{(-4 ra
3 rn cosφ/a3 + 2 ra

2 rn
2/a3 + (2 ra rncosφ)2/a3 – 4 ra rn

3cosφ)/a3 + rn
4/a3)

+ (4 rb
3 rn cosφ/b3 + 2 rb

2 rn
2/b3 + (2 rb rncosφ)2/b3 + 4 rb rn

3cosφ)/b3 + rn
4/b3) }|

 < λ/4.  (3.13)

The aberration that includes first order of rN can also be ignored, because the residual aberration is written

as

|-1/8{-4 ra
3 rN cosφ/a3 + 4 rb

3 rN cosφ/b3}| < λ/4. (3.14)

This term is always zero, because ra /a = rb /b.
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The residual off-axis aberration that consists of square of rN is extracted from the (3.13) as

|1/8{(2 ra rNcosφ)2/a3 + 2 ra
2 rN

2/a3 + (2 rb rNcosφ)2/b3 + 2 rb
2 rN

2/b3)| < λ/4.  (3.15)

By using –1≤ cosφ ≤ +1, and a << b and a ~ f, the following expression is derived.

ra
2rN

2/f 3 < λ/3. (3.16)

Concerning to the third order of rN, following formula is extracted from the (3.13).

|1/8{(– 4 ra rN
3cosφ)/a3 + (4 rb rN

3cosφ)/b3}| < λ/4. (3.17)

This expression may also be reduced as

ra rN
3/f 3 < λ/2. (3.18)

Concerning the fourth order term of rN, the residual aberration is reduced as

|1/8(rN
4/a3 + rN

4/b3)| < λ/4.  (3.19)

This formula is also approximated as

1/8rN
4/f 3 < λ/4

This is the spherical aberration discussed in the previous section.

These formulas give a restriction on the maximum field of view for a given FZP to achieve a diffraction-

limited resolution. By comparing (3.16) and (3.18) with the relation (3.2), it is apparent that the above

conditions are generally well satisfied, when the field of view is less than the depth of focus. Therefore,

from the point of view of three-dimensional observation, the Fresnel zone plate can be used as an

objective lens for x-ray microscope without considering the off-axis aberrations, and the FZP imaging

microscopy is applied to imaging microtomography in SPring-8
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A

B

φ
rna

b

rb

ra

Fig. 3.5 Schematic diagram of off-axis optical path for FZP imaging optics.

3.7. Typical example of imaging microtomography with Fresnel zone plate objective in SPring-8

Typical experimental setup is schematically shown in Fig. 3.6. This microscopy/micro-tomography

setup is installed at the beamline 47XU of the SPring-8. The light source is an in-vacuum planar

undulator with permanent magnet array. The undulator radiation is monochromatized by liquid-nitrogen-

cooling silicon 111 double crystal monochromator. The x-ray energy of 8 keV is selected in this

experiment. The bandwidth of monochromatic x-ray beam through the crystal monochromator is

estimated be ∆λ/λ ~10-4. Therefore, the monochromaticity is sufficient for the zone plate objective.

Condenser optics is a specially designed zone plate with a constant grating pitch of 400 nm. The

zone material is 1 µm-thick tantalum, and the diameter of zone plate is 500 µm. This condenser zone plate

is used in combination with a center beam stop with a diameter of 300 µm in order to achieve hollow-

cone illumination. The circle of least confusion is located at about 500 mm downstream of the condenser

zone plate. Then, by placing the object at the circle of least confusion, a quasi-Köhler illumination

condition is satisfied. In front of the object, a pinhole with a diameter of 100 µm was placed as an order-

selecting-aperture for the condenser zone plate. The field of view is actually defined by this aperture. A

beam diffuser made of charcoal powder (grain size of a few tens µm, and rotating at 600 rpm) is also

placed upstream of the condenser zone plate for the purpose of reducing strong speckle noise due to high

coherence of incident x-ray beam.

The objective zone plate is also made of tantalum with a thickness of 1 µm. The outermost zone
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width is 100 nm and the focal length is 100 mm at 8 keV. The diameter of object zone plate is 155 µm,

and the number of zone is 388. Although the numerical aperture (convergent angle) of condenser optics is

a half of that of objective lens, the influence to the spatial resolution is not serous in this case. An X-ray

imaging detector is used to measure the three dimensional data at single scan. The imaging detector

consists of a fine powder phosphor screen (P43, Gd2O2S:Tb), relay lens and cooled CCD camera

(C4880-41S, Hamamatsu Phtotonis KK, Japan). A high-precision rotating stage made at Kohzu Precision

Co. is used for sample rotation in tomographic measurement. The wobbling of rotation axis is measured

to be ±70 nm within 360º rotation.

X-ray

Rotating diffuser for Speckle Noise Reduction

Condenser lens
(constant-pitch zone plate)

Diaphragm

Sample rotation

Objective FZP

Imaging detector

Center stop

Condenser lens

Beam stop

Objective FZP

Object
Image

1/f = 1/a + 1/b f
 a  b

Diaphragm

Fig. 3.6. Schematic diagram of experimental setup for imaging microtomography.
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diffuser
Beam stop

CZP

pinhole

sample

FZP

X-ray

Fig. 3.7. Experimental setup. Condenser optics, sample stage and objective FZP are shown in the figure.

The imaging detector is located 7 m from the objective FZP, right-hand side out of the figure.
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Basic exercises, before the experiment
1. Calculating the radius of some rings of the FZP in Fig. 1.2, and total number of zone.

2. Calculate the focal length of the FZP in Fig. 1.2 for 8 keV x-rays.

3. Calculate the exact focal point for a given source to FZP distance (depending on the beamline optics).

--> For example, source to FZP distance is 46 m (BL47XU)

4. Calculate the geometrical spot size, assuming a beamline where you will do the microfocusing

experiment.

--> Source size of SPring-8 is ~ 40 µm vertically and ~ 600 µm horizontally.

5. The monochromaticity of x-ray beam is sufficient for the FZP in Fig. 1.2 at your beamline (with a

conventional crystal monochromator)?

--> Look at the optics of beamline from WEB or ask to beamline staff.

6. Calculate the depth of focus for the FZP shown in Fig. 1.2.

7. Calculate the optimized thickness of zone for 8 keV x-rays. Assume the zone material of gold or

tantalum.

8. Drawing the sinc function and Laue function for a given slit and grating.

--> 10 µm slit, 1 Å wavelength, and 100 line grating.

9. Introducing a relation between required monochromaticity (λ/Δλ) and number of zone (N), using the

Laue function for N-period grating.

10. Which kind of pin-hole should be used as the order-selecting-aperture? Diameter, material and

thickness, considering work distance of optics.

--> Once, use 0.5 center stop disc.

11. Calculate the zone plate parameter of the FZP in Fig. 1.2 with a center stop of 50 µm-diameter.
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Practice at the beamlines – microfocus beam

1. General understanding on the beamline optics.

Configuration of beamline 20XU is shown below as an example.

Monochromator

245 m from source point
 f

Si 111
E/ΔE ~ 7000

OSA (20-30 µm)

Front-end Cross-slit (virtual source point)

~ 210 m

FZP

Experimental Setup of Micro-focusing at BL20XU 

2. Finding FZP and order-selecting-aperture, using x-ray imaging detectors.

3. Alignment of FZP and OSA on optical axis.

4. Searching for the fundamental (first-order) diffraction.

5. Finding the focal point by means of Foucault’s knife-edge test.

Far-field image varies as shown below.

FZP

Knife-edge

OSA

Knife-edge

OSA

Focus

Downstream of Focus Upstream of Focus

Focus
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6. Measurement of beam size by differential knife-edge scanning method, and comparison to theoretical

value.

7. Changing the front-end slit size, dependence of focus beam size on spatial coherence condition.

8. Only at BL47XU, measurement of stigmatism for light source, and elimination of the stigmatism by

anti-bending of pre-mirror.

Practice at beamline – imaging microscopy with parallel beam illumination

1. Setting the instruments

Spatial filter in front of sample, FZP, and imaging detector,

2. Searching for the FZP. Observing the diffraction from FZP, and separating the positive, negative and

direct beams by the spatial filter.

Imaging
Detector

FZPSample

Saptial Filter
(Slit Blade)

Beam Stop

3. Put a He path between FZP and imaging detector, and setting a direct beam stop in front of the imaging

detector.

4. Observing some test objects, and how we can adjust the focus?

5. Imaging properties. Change the beam coherence by using a diffuser in front of object.
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Advanced exercises,

1. Calculate the diffraction efficiency, and comparison to the experimental result.

2. Calculating and experimentally testing of chromatic aberrations, how is the tolerance of wavelength

and bandwidth?

3. Theoretical estimation and experimental test of the depth of focus by changing the position of knife-

edge.

4. Influence of mask in front of FZP, shading half of FZP aperture. Both vertical and horizontal focusing

properties. This experiment must be done for the diffraction-limited resolution case.

5. Influence of mask in front of FZP, center obstacle. This experiment also requires diffraction-limited

resolution.

6. Inserting something in the optical path, how serious is the disturbance of wave-front, for instance,

putting a sheet of paper, Kapton foil, aluminum foils, etc?

7. Inclination of FZP and focusing properties, how is the tolerance for angular misalignment?

8. Focusing properties of higher order diffractions, how is the diffraction-limited resolution, and

diffraction efficiencies?

9. The longitudinal source size of SPring-8 undulator is 4.5 m. This length of light source gives some

problem on focusing properties?

10. Focusing properties for off-axis undulator radiation. How large is the effective angular size of

undulator radiation? and its relation to inclination to optical axis (electron orbit). This experiment should

be done at the short beamlines. The BL47XU is preferable.

11. At the undulator beamlines, the x-ray source is very long. SPring-8 standard undulator has a

longitudinal length of 4.5 m. When a demagnified image of source is generated by an optical lens, the

front end and the rear end of undulator, for example, may yield different foci. It is actually problem?


