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Factors Limiting Science

m Detectors are an oft-
neglected but crucial
part of an experiment

m They often limit the
science
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Scientist’s View of Detector

Detection process

Result



The Truth!

Result
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Detector Chain of Events

Signal
Processing

Window
Converter

Computer
Analysis
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Detection Mechanisms

m There are many means of detection. All require
the interaction of photons/electrons with matter

m Examples include

¢ Gas ionisation
® Photons produce electrons and ions which are then detected
® E.g. lon chambers, proportional counters
¢ Photoelectric effect
® Photons eject electrons from a solid creating a current which is measured
® E.g.. Beam monitors
¢ Generation of electron hole pairs
® Photons produce electrons and holes in a semiconductor which are then detected
® Eg..CCD
¢ Fluorescence, scintillation and F centres
® Photons produce prompt fluorescence or F centres
® E.g. Image plates and Scintillation counters
¢ Chemical effect
® Photons create a chemical change such as dissociating Ag halide
® E.g. Film
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Nobel prize in
physics 1921

“for his services to
Theoretical Physics,
and especially for his
discovery of the law
of the photoelectric
effect”

Photoelectric Effect

Germany and Switzerland
Kaiser-Wilhelm-Institut
(now Max-Planck-Institut)
flr Physik

Berlin-Dahlem, Germany
1879 - 1955

Photoelectron

K fluoresence
X-ray E~E,

X-ray photon
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Arthur Holly Compton

Compton Effect

University of Chicago
Chicago, IL, USA
1892 - 1962 X-ray

AL = L(1—cos 0)
m,C
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Nobel prize in
physics 1927

“for his discovery of
the effect named
after him"

X-ray photon
Ao > A
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lonisation Chamber

N

Gas Volume + </> B
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& UNIVERSITY OF SASKATCHEWAN 78 MONASH Universiy

Very simple device

Approximately 1 e~ ion pair
per 30eV deposited

Important that recombination
low as possible

¢ Higher voltages required at higher
rates since more carriers

¢ Diffusion losses caused by
separation of carriers minimised by
higher voltages

¢ Plates too close cause electron
losses

lon chambers are sensitive to
pressure and temperature



Field Variation

Cathode
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Operation regions of gas filled detectors
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Avalanche & Proportional Counter

Positive
ions

Increasing
electric
field

X-Ray photon

Initial
/ ionisation

Gas Volume & \
T

Electrons
out

Electrons
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Georges Charpak

France

Ecole Supérieure de
Physique et Chimie
Paris, France; CERN
Geneva, Switzerland

b. 1924
(in Dabrovica, Poland)
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Nobel prize in
physics 1992

“for his invention and
development of
particle detectors, in
particular the
multiwire proportional
chamber”

Multi-wire Proportional Counter




Counting and Integrating

m If there Is sufficient signal produced by the

I
C

nteraction of a photon or a particle in the
etector then It Is possible to operate the

C

etector as a counter

m It’s all about signal to noise ratio!
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Counting and Integrating

m Usually SNR is insufficient and we have to
accumulate many photons/particles before
the signal becomes measurable
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Counting & Integrating SNR =100
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Counting & Integrating SNR =1
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Integrating Detectors

m Mode

¢ Measures deposited energy at
end of integration period

m Characteristics
¢ High input flux capability
¢ Read noise dominates at low
signal (“fog level”)
¢ Dead time between frames

¢ 2x20 keV phts = 1x40 keV
photon i.e. Cannot perform
simultaneous spectroscopy and
positioning

¢ Examples: Image plates, CCDs
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Photon Counting Detectors

m Mode

¢ Detects every photon as it
arrives. Only active pixels read

m Characteristics

¢ Quantum limited, Detector noise
often negligible

¢ No dead time between frames

¢ Can measure position and
energy simultaneously

¢ Limited input flux capability

¢ Examples: Prop counters,
Scintillators
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Wlllard S. Boyle & George E. Smith

Nobel prizein
physics 2009

"for the invention of
an imaging
semiconductor circuit
—the CCD sensor"

CCD

Bell Laboratories
Murray Hill, NJ, USA

Photons

Gates

28 v viece X

AN Ny

MU HNE BB N E

AHEHEEHBHHHHEE

Oxide N HHENEHEHREE

i o B I H I H R E R

LA AR BRI RE I

age IR RN AR B
ﬂ-dopedsl"wn/ S HHHHHHEHHHHEHE
 BERERBE R Rk

li e ) R
p-doped silicon— § = {3, 818100 Bayeripurys) «* S9N IE 7R IRAK R IR IR IRARZRIRIES

Photoelectric genereration of charge

& UNIVERSITY OF SASKATCHEWAN 78 MONASH Universiy



Charge Coupled Device

Photons
in

Si O,

Silicon
substrate
Column
isolation

Electron-
hole pair Signal

Depletion electrons

region
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CCD Readout

5

Photons in

Clock rows into pox

line readout Readout line
section
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CCD Readout

m Charge 1s moved from pixel to pixel by clocking

m Each pixel has a limited capacitance (well depth)
typically 104-10°¢-

m This limits dynamic range for direct detection
¢ 10keV photon creates ~ 3000e" so saturation = ~ 10 photons

m Speed of clocking is restricted by line capacitance
and charge transfer efficiency
¢ Size of CCD restricted by this

m Noise can be reduced by cooling

m Amplifier usually on chip
4 Heats up that part of chip
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Although sizes > 50mm are available, the read speed is slow to
preserve low noise and cte ( line capacitance becomes very high)

Shutter required
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Complimentary Metal-Oxide
Semiconductor (CMOS)

CMOS Imager

m A readout amplifier
transistor on each pixel
converts charge to voltage

m Allows random access to
pixels, similar to the row-
~column memory cell
Amplifier

Local Amplifier  Photosite
[ la [
:
IR g

D‘ access in RAM

Column Select
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CMOS vs CCD

m Traditionally CCD higher sensitivity and lower
noise

m Modern lithography means they are now similar

m CMOS sensors can have much more functionality
on-chip than CCDs

¢ On chip Image processing, edge detection, noise reduction, and
analog to digital conversion

m CMOS lower power — less heat — less noise
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Use with X-rays

Direct detection
Gain ~ 2000e-L8keV x-ray Phosphor coupled with reducing optics to sensor
Phosphor gain >> 1

Optics Gain << 1

Well depth = 2x10° i
So dynamic range ~100

Phosphor coupled 1:1 to sensor ‘_ _{>

Phosphor gain >> 1
Optics Gain <1

A=) WWWWWWW
W TSN > I

Adddd

N
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Computed Radiography-Image Plate

Exposure Scanning

Creation of F Stimulation Collection PMT
centres of PSL of PSL Ampllflcatlon

Gain>> 1 Gain<1 Gain<1 Gain> 1

: Blue Filter

.k 3\ ®
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X-Y Flat bed Scanner

Phosphor Plate

Fibre optic light guide

He Ne Laser

Photomultiplier tube

F-theta correcting mirror

Distributed Light Collection
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TFT Flat panel Detector

Scintillator Detector matrix
| Readout ICs

Line drivers ICS
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a-Si:H TFT arrays

hv
Indirect Conversion l

scintillator or
converter

Amorphous silicon
substrate

Pixel active Pixel readout
area electronics

D|rect Conver3|on

Amorphous silicon
substrate

/
Pixel active Pixel readout
area electronics
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a-Si:H Array dpiX - Flashscan 30
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PILATUS 6M Detector

Next Generation X-Ray Detectors
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Ch. Broénnimann, E. Eikenberry, B.Schmitt, M. Naef, G. Hilsen
(SLS); R. Horisberger, S. Streuli (TEM); Ch. Buehler (LOG); F.
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PILATUS 6M Detector € cocrms

m Sensor 5 x 12 =60 modules
¢ Reverse-biased silicon diode array
¢ Thickness 320 um
¢ Pixel size 172 x 172 pm?

m 2463 x 2527 = 6,224,001 pixels
Area 431 x 448 mm?

Intermodule gap x: 7 pixels, y: 17 pixels,
8.4% of total area

Dynamic range 20 bits (1:1,048,576)
Counting rate per pixel > 2 x 108 X-ray/s
Energy range 3 — 30 keV

Quantum efficiency
(calculated)

¢ 3keV: 80%
8 keV: 99%
15 keV: 55%

Energy resolution 500 eV

Adjustable threshold range 2 — 20 keV
Threshold dispersion 50 eV

m Readout time 3.6 ms
m Framing rate 12 Hz
m Point-spread function 1 pixel
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PILATUS 6M Detector € cocrms
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m X-ray diffraction image recorded from
a ferritin crystal (energy=16 keV,
distance = 204 mm).
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Spectroscopic Detectors

Rainbow Lorikeets
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Spectroscopic Detectors

m For gquantitative work, most are counting
detectors that measure the size of individual
energy deposits

m Alternative 1ds the use of filters as in optical
colour cameras
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Electron multipliers & Scintillators

photommltplier

Optical

X-rays

photocathode ’ H\E'IIUIII:].E

Channeltron is a similar with
distributed dynode

Micro-channel plates are
mutlichannel channeltrons
with each channel being an
electron multiplier.
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Multi Channel Spectoscopic Detectors

Canberra Ultra-LEGe detector

WRULEAD (Windowless, Retractable, Ultra Low
Energy Array Detector) works down to 300eV

Multichannel devices up to 30 channels at 3x10° cts
st channel-1 have been built
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SPring-8 128 channel Ge strip

Charge Sensitive Preamplifiers
Voltage | || | | | || | |
Supply N A S A A NN T o
S
© | Vacuum crostrips |
‘ Vessel
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Anode

Cold Finger

m Ge
¢ 55.5%x50.5x6mm

m Strips

¢ Number 128

¢ Width 300pum

¢ Interstrip 50um

¢ Length 5mm
m Readout

4 Single channel 100ns

¢ 32 channels 3.2ms

m Max expected count rate
¢ 14kcps



Spectral Resolution

m Average number of carriers, N = E/w
where w Is energy to create electron hole/ion pair
m Poisson statistics 6 = 1/vVN
= (E/w) 7= (W/E)”
m AE/E fwhm = 2.355¢6
= 2.355(W/E)”

m For Ge, w =3eV so at 10keV AE/E ~ 4%
m For Nal, w = 30eV so at 10keVV AE/E ~ 13%

& UNIVERSITY OF SASKATCHEWAN 73 MONASH University



Fano Factor

If all energy from photon or particle were converted into carriers
there would be no variance

Poisson statistics assume only a small fraction of energy goes into
charge creation

Reality Is somewhere in between so Wezintroduce Fano factor F
Fano factor is defined as F=2_

where o is the variance and p is the miean number of carriers
For a Poisson process, the variance equals the mean,so F =1

Examples

¢ Si:0.115
Ge: 0.13
GaAs: 0.10
Diamond: 0.08

Observed relative variance = F x Poisson relative variance
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Scintillator vs Germanium

o
o
|
|

Nal{T1) scintillator

o
a

o
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o
)

]02 L germanium
semiconductor
detector

10

number of recorded pulses per pulse-height channel

pulse height {channel number)
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The top spectrum is from a
scintillation detector, and
the bottom is from a
germanium semiconductor
detector. The superior energy
resolution of the germanium
is evident from the much
narrower peaks, allowing
separation of gamma-ray
energies that are unresolved
in the scintillator spectrum.
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Things to Look Out For
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Efficiencies

Gas thickness 1cm
Windows 100um
1 N -1
0.9 - + 0.9
0.8 - / — Be + 0.8
Al
0.7 1 —Polimide 107
g 0.6 - —Polyropylene | o6
‘D Ar
k2 —Kr
g 0.5 - e + 0.5
&
= 0.4 + 0.4
0.3 - + 0.3
0.2 - + 0.2
0.1 + 0.1
0 n T T T T T I O
0 5000 10000 15000 20000 25000 30000

Energy (eV)
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esponse to Uniform Illumination

ESRF TV Detector
Thompson IIT & CCD

115

11

1.05

0.95

0.9

0.85
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Spec 0.2mm max
Worst gap 2.97mm

Pixels in gaps 513922
5.45%
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Intensity Test
00
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Graded Absorber Comparison

Mar Image Plate ESRF-Thompson IIT/ CCD Daresbury MWPC
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Spatial distortion

ESRF Image
intensifier
detector
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IPlate Single Peak PSF
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Geometric Distort
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Overlaps
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Dark Currents
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Flat and Dark Correction

For each image, two correction images
must be recorded.

1. A flat field (uniform illumination of
the detector)

2. A dark image (no irradiation of
detector)

Both must be recorded with the same
exposure time as the original image

since dark current is a function of
exposure time.

Then apply the following correction

(image — dark)

Corrected =
(flat —dark)




Dark Current

Pixels above the 0.2 photons pix! specification

Number failing 2 measurements 5-2000s

Mean 44764 0.47%
Min 40822 0.43%
Max 48706 0.52%

nb. 14300 pixels not common to both
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Subtraction of dark images
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Flashscan 30 - Image Lag

100.00%

10.00% A

1.00% A

Fraction of initial difference remaining

010% T T ! ! I

0 2 4 6 8 10
Time (Minutes)

& UNIVERSITY OF SASKATCHEWAN 73 MONASH University

12



Radiation Damage (Medipix)

m Damage occurred at 40Gy or
1.3x101%ht/mm? in the readout chip

m At 13 keV photon energy

4 Strong diffraction spots typically 10° phts/s or 10°
phts/mm2/s

® Damage requires ~ 8hours exposure

¢ Direct beam (101°-1013 photons/mm?/s)
® Damage In less than a second.
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dpiX Flashscan 30 PaxScan 4030
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Flashscan 30 - Performance

Mar Image Plate
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Electronics Issues

Koalas Albino Kookaburra
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Amplification

1 V2 = 4KTRAf

m \Voltage mode
¢ Output o input voltage
¢ Effect of R; dominates C;

m Current mode
4 Output oc input current
¢ Low input impedance
m Charge mode
¢ Output o input charge
¢ C;dominates R;
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In almost all cases we require
amplification
Amplifier-detector interaction
Is critical

Most important element is the
Input

Noise Is the major issue

¢ Thermal or Johnson Noise
® Brownian motion of electrons
® No current flow or voltage required
® \White noise

¢ Shot Noise
® Fluctuations in current
® \White noise

12 =2q,IAf



Equivalent Noise Charge

m Introduce ENC which is that signal charge that will produce the same output as
the RMS noise

ENC? = eXp(Z)I —T-I—TZ'-I—

2R, 29,7
Where B -
m k = Boltzman’s constant
m T = temperature
m € = the electronic charge
m R, = Load resistance and/or feedback resistance
m Q, = transconductance of input FET. (Links current in to voltage out)
m T = Rise time of amplifier
m C;, = input/stray and feedback capacitance
m I, = Draincurrent
m Note that ENC is directly related to energy resolution
m FWHM(keV) = 2.355x10-3 ENC/ew where w is the energy per electron
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Noise Dependence

B 2
ENszeZJg;T+qJDr+kT«%)
2R, 4 29,7

m T optimum at

2
kT/29
- m C.
o |:(kT/2Rf)+(qelD/4):| !
m Choosing optimum t gives best noise performance but may not be
fast enough

m We often have to sacrifice energy resolution for speed
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Sampling & Aliasing
zEV AL I

0.4 -

"L \

0 D.2 0.

=

O Sampling 5
——f=6
\} —1f=11
m Shannon’s Theorem and Nyquist Criterion

¢ The highest frequency that can be ‘measured’ is twice the sampling frequency

m If the input is not band limited to frequencies less than /2, then aliasing will
occurs at frequencies f+nf,

¢ where f = signal frequency, fs = sampling frequency, n = integer
m If you have 100um pixels, the ideal spatial resolution (PSF) > 200um

1.2
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Synchrotron Detectors

m A synchrotron source Is used primarily
when sensitivity IS an Issue

¢ Signal too weak
¢ Time resolution too poor
¢ Sample too small

m More 1ntensity can help this but. ..
m It places a major strain on detectors and

Flux 1s a major issue for
detectors!
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Dead Time
VI A ,
Non-Paralysable 0 [ [ [ N

Paralysable_ [F07] [T I N

R,=input rate, R,=detected rate, t dead time

m Non-paralysable deal
¢ Fraction of time detector is dead = Ryt
¢ Live time is therefore = 1- Ryt eal
¢ Inputrate = Ri= R /(1- Ry7)

m Paralysable
¢ R, = Probability of getting no event within t of an event ‘ Ideal

-R;t n
¢ Probability of n events in time t is P(n,t) — € (llqit)
n!

Real

¢ Detectedrate R, = P(O,r): Rie—Rir
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EDR Detector for Powder Diffraction

Standard detector

Standard Detector |:| > /‘\‘\_ P— )
: g ! s . Saturation count rate: 1 MHz

Window

aserminter Linear region: up to 300 kHz

YAP photo- amplifier

multiplier
EHT

. Electronic background: 0.2 cps

Modified Detector [ ) T/\_ counter *  Energy range: 4-25 keVV
o o | % R e Modified detector
m g T T i ; Saturation count rate: 3 MHz
. Linear region: up to 2 MHz
3 106 Modified e Electronic background: 0.7 cps
detector . Energy range: 4-25 keV
2.108 -
o
2 .10%] / |
— 1.5.106 5 \
0
o — |
g 7 [
> S N
= = 1.106 A u
2 2 )
g 11084 /L aaemmmmom %) +/,.|-~+_+ +\.\
£ - Standard @ . o |
detector £ 1077 - n
+m ;
% .""'-
OH‘J
O ' | i I ' I 1 T T T T T
0.0 0.2 0.4 0.6 0.8 143 144 145 146 147
o(deg.)
Slit size (mm)
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Speetral Peak Shift vs Rate

Input rate
1.2E+6

0971 2 8E+5
2 5E+3

m AS rate rises

¢ Spectral resolution
deteriorates

¢ Note also the K escape
feature

Normalised Counts

0 50 100 150 200 250 300
Channels
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Detector Considerations

m Intensity Measurement m Energy Measurement
¢ Uniformity across device ¢ Spectral Resolution
¢ Ageing, radiation damage ¢ Linearity of Response
¢ Dynamic Range ¢ Uniformity of Response
¢ Linearity of Response ¢ Stability
¢ Stability m Time Measurement

m Spatial Measurement ¢ Frame Rate
¢ Spatial Resolution ¢ Photon Time Resolution
¢ Spatial Distortion m Others
¢ Parallax ¢ Size and weight

¢ Cost
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A Universal Specification?
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Counting Statistics

m Photons are quantised and hence subject to probabilities

m The Poisson distribution expresses the probability of a
number of events, k occurring relative to an expected
number, n « n

P(n,k) =12

k!
m The mean of P(n, k) is n

m The variance of P(n, k) is n

m The standard deviation or error (noise) is Vn
m If signal = n, then SNR = n/An=n

m As nincreases, SNR improves
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Performance Measure - DQE

Perfect detector  SNR__=./N. .. N;,. =SNR®, .

Real detector R joridear < /
Can define N that describes real SNR

NEQ = SNR*Non-ideal
IS a measure of efficiency

2 .
DQE _ NEQ _ SNR Non—;deal
I\linc SNR

Note that DQE is f(spatial and spectral frequencies)
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photons

Ratio of this to N.

INC




Effect of Peak Width
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DQE Comparison ON-5 beam
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Te Count Or Net to Count
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Collagen 100s Exposure
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Collagen 10s Exposure
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Collagen 0.3s Exposure
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Cornell PAD (Integrating)

m Rapid Framing Imager
¢ 15x13.8mm? active area
¢ 150um square pixel
4 Storage for 8 frames
¢ Selectable T, down to 1us

Int

¢ Deadtime < 1pus
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Diesel Fuel Injection Movie

m Injection m Movie
4 Supersonic injection 1350psi Cerium added ¢ Length 1.3ms
¢ Chamber latm SF; ¢ Frame length 5.13ps
¢ 108-10° X-rays/s/pix (6keV) ¢ Deadtime 2.56ps / frame
¢ 1.1msPulse ¢ 168 frames (21 groups of 8)
¢ Average 20x to improve S/N
¢ Sequence 5x10% images
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Combine Imaging and Spectroscopy

1

Y

FPGA GDAQ
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Pixel Array Detector

A. Top electrode

B. Pixellated
semiconductor

C. Collection electrodes
D. Bump bonds

E. Inputelectrode

F Pixellated ASIC
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Available Compound Semiconductors

m Predominately CdZnTe,

CdTe and GaAs. elemental —— IVB Ge.SiC
m |I-VI materials CdTe and Group L l_
CdZnTe cover a suitable 4 binary IV-IV SiGe, SiC
range of band gaps: T binary ——— II1-V InP, GaAs, GaN
¢ 144¢eV (CdTe), 1.57 eV |— j{% ey ——— TV HgTe, CdSe, ZnS
(CdZnTe, 10% Zn), 1.64 eV e 0| “ | ¢—— tomary —— HgCdTe, AlGaAs

(CdZnTe, 20% Zn)

m Resistivity of CdZnTe is
higher than CdTe, hence
lower dark current, higher
spectroscopic resolution

m Poor hole transport requires
electron-sensitive detectors

v s | quatermnary — InGaAsP, InGaAlP

1 44 £t 4]

MONASH Uni i .
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CdZnTe Speetral Resoluﬂon

5000 — with Te inclusions
15x15x7.5 mm’ ™ 3.2% FWHM'
R without Te inclusions —26% FWHM,‘__ I, 3 Puls,er-
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The Problem of Multiple Scatters

\EO

€ SN

E,
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m Need to measure E,
. EO:E1+E2+Eesc

m Must be able to detect
multiple deposits as
single event

©m Must minimise E__



Other Issues

m In addition to detector performance metrics
such as

¢ Spatial resolution
¢ Spectral resolution
¢ Etc. etc.

m Consider other 1ssues such as
synchronisation.

m Many experiments require triggers or
measurements of multiple parameters.
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