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Scope & Outline ' Some References

Huge & Complex Topic - Appropriate for a semester, not an hour... Shulke, W.-(2007), Electron Dynamics by Inelastic X-Ray Scattering.

New York: Oxford University Press.
& References therein (RIXS, X-Ray Raman, NRIXS...)

Main Goal:
Introduce CGPGbi“Ties & Put them in Context Squires, G. L (1978). Introduction to the Theery of Thermal Neutron Scattering.
What properties can be measured? . New York: Dover Publications, Inc.
Why consider these techniques? van Hove, L. (1954). Phys. Rev. 95, 249-262.

) - ’ Born, M. & Huang, K. (1954). Dynarr;ical Theory of Crystal Lattices.
Outline: Oxford: Clarendon press.

Introduction Bruesch, P. (1982). Phonons: Theory and Experiments, Springer-Verlag.
Instrumentation ’

Non-Resonant Techniques Cooper, M.J. (1985). Compton Rep. Prog. Phys. 48 415-481
Resonant Techniques (Briefly) -

Ament, L.J., et al, (2011). RIXS, Rev. Mod. Phys. 83 705-767
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Scientific Information

(from IXS)

Atomic Dynamics -> Motions of atoms in a solid (phonons) or liquid.
Phase transitions, thermal properties, fundamental science (Atomic binding)
Electron-phonon coupling, Magneto-elastic coupling
Superconductors,-Ferroelectrics, multiferroics, etc

Electronic Dynamics
Chemical Bonding (Valence, etc)
Electronic Energy Levels (atomic/molecular)
Delocalized Electronic Excitations
Generalized Dielectric Response
Fermi-Surface Topology
Magnetic structure
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SPring
Table Of IXS Techniques/Applications HES

Technique Comment Energy Scale Information

. E;,~10 keV
X—qu Raman (E)XAFS in Special Cases 3 © Edge Structure, Bonding
AE~100-1000 eV .

Elastic

C t Oldest E;, ~ 150 keV Electron Momentum Density
ompton Note: Resolution Limited AE ~ keV Fermi Surface Shape

units)

. . E,, ~ 150 keV ‘ )
ngneﬁc Compfon Weak But Possible 'AE ~ keV/ Density of Unpaired Spins

(arb.

RIXS High Rate E,, ~ 4-15 keV

Electronic Struct
Resonant IXS Somewhat Complicated - AE ~1-50 eV T

SIXS : 0.1-1.5 keV Electronic & Magnetic Core

Under Development

Soft (Resonant) IXS AE = 0.05-5 eV Structure QuasiElastic

Plasmon
Valence

NRIXS - Low Rate E,~10 keV
Non-Resonant IXS Simpler AE ~ <1-50 eV

E;~16-26 keV
IXs Large Instrument ¥ eV Phonon Dispersion

High-Resolution IXS AE ~1-100 meV 10” 1 00

NIS Atom Specific E, ~ 14-25 keV ElementiSpedific Energy Transfer to Sample [eV]

Nuclear IXS Via Mossbauer Nuclei AE ~1-100 meV Ricnon D(%”ggy) of States

Electronic Structure

S(Q,omega)

Note also: Limit fo FAST dynamics (~10 ps or faster)




Spe’c‘rroscopy. D) P. Where We Are Measuring
Absorption vs. Scattering . Between the Bragg Peaks..

_ Conventional Diffraction On Log Scale
Absorption Measure absorption as you = Linear Scale
Spectroscopy scan the incident energy

Optical, IR, NMR When energy hits a resonance,
or exceeds a gap, or... get a change

Free Parameters: Ej, e, k,
-> In principle, 3+ dimensions Optical Spect. NiO

but in pracfice mostly 1 (E,) Newman, PR 1959 .
Precession Photo

Silicon

Scattering
Spectroscopy

E, ke, E, ke,
IXS, Raman, INS
Free Parameters: E;, ey, k;, E,, e, k,
-> In principle, 6+ dimensions .
pin pr;c‘rice, mostly 4: E-E,, Q=kyk, e For IXS-we are usually measuring between the
Bragg peaks where the intensity is weaker.

. i 1 8 12
Laue Photo A strong signal is down by 108, weak by 10

Bragg peaks
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X-Ray Scattering Diagram
Y 9 ©1ag Resonant vs Non-Resonant

Tune near an atomic fransition energy
ier K, L or M Edge of an atom
Resonant:  Generally High Rate
E; ke, s Complex interpretation
Energy fixed-by resonance ->-poarer resolution

Two Main Quantities:

. Far from any atomic #ransition.
Energy- Transfer . Momentum Transfer Non- sma cross—ysec‘rion .

E or AE = E-E, = 7 Resg:\san‘r: Interpretation difectly in terms of electron density
. o4
. )

NRIS - Choose energy to match optics -> good Resolution

Note: For Resonant Scattering ’ ; . . i
E,and Ezand Poln, Slightly Different Experimental Setup
Are also important
Nuclear Resonant -> Different entirely... later.




Dynamic Structure Factor

Tt is convenient; especially for non-resonant scattering, to separate the
properties of.the material and the properties of the interaction of the

photon with the material (electron)

Dynamic Structure Factor
“The Science”

ﬁ Why is it Better to Measure
in Momentum/Energy Space?

For diffraction (and diffractive/coherent imaging), one goes to
great lengths to convert from momentum space to real space.
If possible, a direct real-space measurement would be preferred.

Equilibrium Dynamics: Q,E space is what you want.
Normal modes -> peaks in energy space -> clear and "easy”

Periodicity of crystals -> Excitations are plane waves
-> Q is-well defined

Non-equilibrium dynamics -> Real space (X,t) can be better.

Non-periodic (disordered) materials -> Expand in plane waves. (oh weln

: = 2 /’/1““/1“ Z U'Q.r“‘/l: 5(5/«"7E,«'771(l))
A

Different Views of S(Q,w)

Transition between states

electrons
J
Fluctuations in electran density

L far a'rar C (=0 (ear ) - NE Y| Y Y Qgag 0 b Fy(0)

mh

Generalized Response

11 oo (I P
77111117)((()‘0))[ = 7770“—[111!78 (Q.0)} . . .
IR ! Tl-e "Bl yQ) L " (e.g. Dielectric functions

See Squires, Lovesy, Shulke, Sinha (JPCM 13 (2001) 7511)

Kinematics

Conservation of Energy

Kinetic Energy Given to Sample:

Take: M=57 amu, Q/c = 7 A1 -> E,=2.3 meV
do ho S(Q.w)

Jdo S(Q.0)

Compton Form: Zae8




P. The IXS Spectrometer

iR Basic Optical Concept
An Optics Problem e pet oneek
AE

Main Components Bragg’s Law : A =2dsin(@g) => [CES tan(@B] E

Monochromator: Detector
Modestly Difficult / '
Accepts 15x40 prad? X-Rays 0 . Ayt
Sample Crystal

, Focussing

High Resolution
Monochromator

Working closer to ©;~90 deg. maximizes the angular
acceptance for a given energy resolution...

The Goal: Put it all together and
Keep Good Resolution, Not Lose Flux

Note: small bandwidth means starting flux reduced by 2 to 3 orders of magnitude...

Analyzer Crystal

Detector

Require:
Correct Shape (Spherically Curved, R=9.8 m) Sample
Not Strained (AE/E~few 108-> Ad/d<<few10-3) Analyzer
Crystal

Method: Bond many small crystallites to-a curved substrate.

3. Bond to

1. Cut 2. Etch Substrate 4. Remove Back

X-Rays

\ 9.8 m Radius, 10cm Diameter
égj’f;::lg’e?g??t 50 or 60 um blade, 2.9 mm depth; 0.74 mnt pitch
s Channel width (after etch): ~0.15 mm

5(,‘ 1 4
Note: " For resolution >300 meV, bending can be OK. SRR SN




Incident Beam
®~100 pm
¢ 20 um Possible

R

Rin Other Spec‘rrome’rer's @ SPrmg 8

RIXS Spectrometer
2m Arm, BL11XU

Emission Spectrometer
¢"1.5m Chamber

% (~eV Resolution)
Hayashi, et al

SPring
A Medium Resolution Spectrometer <

Medium Resolution Spectrometer:
Arm Radius: 1 to 3 m
Resolution: ~0.1 to 1-eV

Used for RIXS and NRIXS

BL12XU BL11XU  BL43LXU

Shorter Possible
(later, if time)

Note difference between RIXS and NRIXS
NRIXS: Choose the energy.to match the optics
RIXS: -Resonance chooses energy -> usually worse resolution

0 15 20 25 30 3 4

SPring..8
Other High Resolution Spectometers

ESRF(ID28) APS (Sector 30)
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Atomic Dynamics: Systems and Questions

Disordered Materials (Liquids & Glasses):
Still a new field -> Nearly all new data is interesting.

How do dynamical modes survive the cross-over from the
long-wavelength continuum/hydrodynamic regime to
atomic length scales?

Crystalline Materials:
Basic-phonon model does very well ->  Specific questions needed.

Phonon softening & Phase transitions (e.g. CDW Transition)
Thermal Properties:  Thermoelectricity & Clathrates

Sound Velocity in'Geological Conditions
Pairing mechanism in superconductors

The IXS Advantage

IXS has no kinematic limitations (AE«<E))
Large energy transfer at small momentum transfer
-> excellent access to mesoscopic length scales

Water (GIassy-Se

Teixeira, et al ; pERe ! bataof Foret et al Scopigno et al
w| INS (1985) % J INS (1998) [ IXS (2004)

|
L)

|
i

k
Il

j

1l

Sette et al

LAl
ff

lla IXS(1996) ri0um

./

No Incoherent Background <1 meV resolution is hard

Small Beam Size (¢<0.1mm)

But:

Also: : .
Low Rates for Heavy Materials

Disordered Materials

Liquids & Glasses

First Glance: Triplet response similar for most materials.
Dispersing Longitudinal Sound Mode
+ Quasi-Elastic peak

a-Se (Scopigno et al)

SPr‘irjg.i 8
"Fast Sound" at the Metal-Non-Metal Transition L
in Liquid Hg

Universal Phenomenon in Liquids:
Expand a liquid metal enough and it becomes an insulator.

Ultrasonic
Velocity

P [har]

Suggests a change in the microscopic
density fluctuations...

Probably general phenomenon...

but no confirmation yet.
(Next M-I transition under discussion)

Ishikawa, Inui, et a/, PRL 93 (2004) 97801




On Positive Dispersion

Very General featire:

As Q increases the phase velocity of the
acoustic mode becomes larger than the
Low-Q (e.g. ultrasonic) sound velocity.

Casual explanation
For"smaller length scales (high Q) and higher
frequencies, a liquid, locally, resembles a solid
which has a faster sound velocity.

Partial explanation in terms of a visco-elastic model...
Scopigno & Ruocco RMP 2005

Ruocco & Sette CMP 2008
Bryk et al JCP 2010

Shear Mode in a Simple Liquid
Pressure Wave ina Liduid_: Shear Wave -> Harder...
Nearly Always Visible

liquid Ga
C

ty (Arb. units)

Intens

Weak, but significant, signal.
2.5 Days -»?

0

o v Hosokawa, et al, PRL (2009)

Next experiment: |-Cu

" LiquidHo

Supercritical
Argon

Simeoni et al NPhys 2010

Temperature

Take the presence of Positive Dispersion
as the definition of liquid-like behavior

Gorelli et al, PRL (2006)
Simeoni et al, NPhys (2010)
Also Bencivenga et al EPL (2006)

Liquid Excitations = Solid + Disorder?

Giordano & Monaco, PNAS (2010)

) IXS fram Na: Above & Below T,

Black = Polycrystalline Na
Blue = Liquid Na

Red = Polycrystal + Scaling by
Density, T, & Blurring...

Not bad ...

8




Phonons in a Crystal 3 MgB, As An Example

- . . _ Layered Material
Normal Modes of Atomic Motion = Basis set for small displacements Hexagonal Structure

Must have enough modes so that each atom in a crystal can be moved in
either x,y or z directions by a suitable superposition of modes.

, B-B Bond is Short
If a crystal has N unit cells and R atoms/Cell then it has ‘ B Layer & Stronger

3NR Normal Modes :
Mg Layer Mg-Mg Bond is
Generally: Consider the unit cell periodicity separately — Longer & Weaker
by introducing a “continuous” momentum variable, q.

-> 3R modes for any givén q 3 Atoms/cell 2 9 modes / Q Point

Acoustic and Optical Modes

Acoustic Modes are Continuum (Smooth) Modes

Dispersion of an Optical Mode

t-. olo _.‘a-.l.
.. o”.“;l _.I_“Ilo”.
"‘,‘,§_ .'.‘.,‘.

;% i (0.5 0 0)

LA Mode TA Mode Optical Mode

Compression Mode Shear-Mode Atoms in one unit cell
' move against each-other




Phonons in a Superconductor

Conventional superconductivity is driven by lattice motion.

“Phonon Mediated” - lattice “breathing” allows electron pairs fo move without resistance.

How does this coupling.appear in the phonon spectra?

Screening lowers the energy of the mode

Softening:
(abrupt change <=> Kohn Anomaly)

Additional decay channel (phonon->e-h pair)
reduces the phonon lifetime

Broadening:

SPring.

Superconductors

Systems Investigated include
MgB,, Doped MgB,, CaAlSi, B-Doped Diamond
Hg1201, LSCO, YBCO, LESCO, TI2212, BKBO, NCCO,
Bi2201, Bi2212, Nickelates, Oxychlorides

-o- Metal
Cuprate
*- Organic matter
Semiconductor
*- Fe-based system

| Lig-N
Lig-He
e
Nb NbN [gsSn
X pp—

1960
From T. Fukuda Year

Dark Blue Line: - Conventional, Phonon-Mediated Superconductors

Electron Phonon Coupling

& Kohn Anomalies

On the scale of electron energies, a phonon has nearly no energy.
A phonon only has momentum.

So a phonon can move electrons from one part of the Fermi
surface to another, butNOT off the Fermi surface.

Kortus, et al, PRL 86 (2001)4656

Fermi Surface
Diameter = 2k

MgB;

High_T, (39K)

Large Momentum

Q>2k:
Can Not Couple to the
Electronic system

SPring.. 8

C=D

Phonon Structure

Nagamatsu, et al, Nature 410, (2001) 63.

Simple Structure...
straightforward calculation.

"BCS (Eliashberg) superconductor with mode-specific

Bohnen, et al. PRL. 86, (2001) 5771.

electron-phonon coupling.




RIKZH
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ﬁ Electron-Phonon Coupling in MgB,

Dispersion ' Spectra Linewidth

meV)

FWHM (r

] M (A

Clear correlation between
linewidth & softening.
Excellent agreement with LDA Pseudopotential calculahon

PRL 92(2004) 197004: Baron, Uchiyama, Tanaka, ... Tajima

SPring..8

More Superconductors

Similar types of results for
Mn Doped MgB,
CaAlSi
Boron Doped Diamond

Extrapolation to the High T, Copper Oxide Materials....
1. Much More Complex =
2. Calculations Fail so interpretation in difficult

SPring.. 8
Carbon Doped Mg(C,B,_,), C=>
2%C, T.=355K .125% C, T.=2.5K AIBZ (Not 'SC)

(2.37,0,0.01)

Phonon structure correlates nicely with T, for 'charge doping.
(Electron doping fills the sigma Fermi surface)

R . R

Rirh Phonons in the Cuprates...

Everyone has their favorite mode, or modes, usually focus on Cu-O planes

In-Plane Mode: (0. 0)_ (0.5 0)

Stretching mode

Out of Plane Modes:
Buckling Mode

Apical Mode

At the level of phonon spectra, the anomaly of the
Bond Stetching Mode is very large
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. P Copper Oxide Superconductors C=)
RN Phonons in the CUPFGT@S... Al Remain Cha”engmg

Everyone has their favorite mode, or modes, usually focus on Cu-O planes De-Twinned YBCO: Goliifiodes nPIn ds
YBach3O7_W}

In-Plane Mode:

(00 (0.50)
$ o4 . ol s Lines = Calculation
A Points = IXS

Stretching mode

Out of Plane Modes:
Buckling Mode

Apical Mode

Beautiful A t Probl
At the level of phonon spectra, the anomaly of the ST (G ropiems

Bond Stetching Mode is very large Shows Bond Stretching Anomaly ~ Compare IXS to Calculation
Is Huge (» Buckling Anomaly) At low T (~30K) Bohnen, et al.

SPring.. 8
La; 4sNdg 4Srg 1,CuO, ﬁ Iron-Pnictide Superconductors

High-T, demonstrated February 2008 (Hosono's group)

(T, saturated within months...)

Phonon anomaly (blurring) is highly localized in

momentum space...
Metal
Cuprate
Organic matter

Expt done by a neutron scatterer because } | Semiconductor
Fe-based system
he could not get good enough
resolution using neutrons ,
| Lig-N
Forces a reintérpretation of some Neutron

Lig-He
data (Reznik, Nature, 2006)

N
Nb,;Sn
Nb gIDN —o2=———
4

1920 1940 1960 1980 , . 2066°"°
Year
D. Reznik, et al

Proximity Yo Magnetic Order
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Phonqns in the Iron Pnictides 2 M Some Examples of Measured Spectra:

In-Plane C-axis

1111 Materials -> 8 Atoms/cell PrFeASO, , (3.0300.006) AT

-> 24 Modes (6 mostly oxygen) !
Superconductor —— 4" (0.375 0.375 9.0)
Parent ——

Magnetism -> 16 Atoms / 48 Modes / oh 7K -
/ oo RT
No ab mirror plane . ) A i b
-> Complex motions appear quickly o | gt ? P e T
as one moves away from gamma. | arent (0.2510.25 9.0)

N
s i ¥
20 30
sfer [meV]
Estimate )

Phonon response, in itself, is remarkably plain: = - - =
NO very large line-widths of mode  wase tavs i Energy Transfer [meV]
NO obvious anomalies ) o . i

NO asymmetric Raman lines

fre

Clear differences in measured spectra (with doping, temperature)
-> interpretations requires modeling...

SPring..8 SPring..8

' : C=
Basic DFT (6GA) for PrFeAsO _leferen‘r Models:

(No Magnetism)

Original: Straight GGA for Tetragonal stoichiometric PrFeAsO

Some agreement, but details are poor
0,5 Super cell 2x2x1 with one oxygen removed

. : " X ) , and softened Fe-As NN Force constant
A'so’ fails to geT correct As helghT | ' (31 atoms/prim cell, Tetragonal, No Magnetism)

above the Fe planes.
Magnetic Orthorhombic: LSDA for LaFeAsO with

stripe sfructure of De la Cruz (16 atoms/prim. cell, 72 Ibam)
Fe-As Bond Length
Expt: 2.41 4
GGA: 231-2334

Magnetic Tetragonal: LSDA for LaFeAsO with stripes
Force a=b (fo distinguish effects.of structure vs magnetism)

Clipped: Mag. Ortho. with cut force constant

Soft IP: “Original” but soften FeAs NN In Plane components

A Better Model is Needed

Original ab-initio Calculations: Nakamura & Machida
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Compare dispersion with various models Comments

La(o) mag.

Of the straight ab-initio calculations, magnetic models do better than
non-magnetic due to softening of ferrmagnetically polarized modes
However, they get details wrong, including too high an energy for AF
polarized modes & predicting splitting that is not observed
Blue =
Calc. Of the modified calculations, the in-plane soft generally seems best,
but still data-calc difference are larger than doping/T effects.

Size:

. Many people have suggested some sort of fluctuating magnetism, especiall
Intensity Y peop 99 4 Ing magneTi pecially

when magnetic calculations were seen to bé better than non-magnetic
calcs for the (non-magnetic) superconducting materials.

However, phonon response of parent and SC are nearly the-same, and it
seems unlikely that fluctuating magnetism is the answer
in-the parent material which shows static magnetism.

Over all: Better fit with magnetic calculations
And best fit.with either “clipped” or "IP Soft" model

To_wards A Better Model?

Fitting of full spectra: intensity vs energy transfer.

Zeroth Approximation: All Samples are the Same
Doping and Temperature Dependence are Weak

Differences between samples:is generally much smaller
than between any calculation and the data

-> Fit all spectra o a common model Energy Transfer [meV]
and then fit subsets of the data to determine

effects of doping or phase transitions. In-Plane Soft is Some improvement by
’ NOT bad but also allowing parts of nearly all
But also NOT great. NN bonds to change.




Phonons in a Quasicrystal » ﬁ Ferroelectrics

Mostly like a solid but some glassy character. :
Develop:spontaneous polarization over macroscopic (>~um) domains when T'is below
the ferroelectric transition temperature (T,). The origin is a displacement (off-
centering) of ions. This is switchable by an external (electric) field.

YA Y -
| Ja - ' i Zeroth Approximation -> Two types of transitions

“

Building a Quasicrystal (_ZnAMlng'

g . . ¥ W Displacive" transition where there is a "continuous” below T
Periodic (BCC) -> Crystalline Approximant : "Soft Mode” transition Examples: BaTiO,, KTaOs, 6d (MoO,);

APemOd'C =2 QUOSICI"!STO' E Ferrodistortive transition involves softening of gamma point mode

Soft Mode (ferroelectric modes)
Nomenclature  Anfiferrodistortive involves softening 6f zoné boundary mode

Compare to crystalline approximant & (unit cell size increases)
Simulation (2000 atoms/cell) : :

General Trend: Blurring out
past a cutoff energy
“Pseudo-Brillouin” zone size

g-+030 4

De Boissieu, et al.
Nature Materials, Dec 2007 , Blue: Simulation

SPring..8

Perovskite - Similar to SrTiO;

But with magnetism & coupling of
magnetic & dielectric response

Phase transition just below RT - putative
ratation oxygen octahedra.

Calculations say disorder-order.
Bussman-Holder, PRB, 2011

10
Energy (meV)

Intensity (s b

30
2 2 o 00)
Temperature (K) (q00)

Shell model -> Good agreement "Softening" (or weight shift) as T is
Suggests "soft" mode has Slater reduced toward Ty consistent with
character. gradual change in dieléctric response
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| IXSPunder' High WP'H High Pressure & Temperature for Geolog
ressure

General Viewpoint: Just another thermodynamic variable.

PREM: Prelimiary Reference Earth Model

Specific: elastic properties in extreme (geological) conditions

based on IXS sound velocity measurements
V,, Vs Known
I\feed T, p,

Composition

s

* core-mantle
boundary

1356Paq,
2000-3500K

Often: Just want the sound velocity
Precision/Accuracy 0.2/0.8%.using
Christoffel’s Eqn & 12 Analyzer Array

° H. Fukui, etal., ISR

Mantle Outer core Tnner core

V,, Vg (km/sec), r (g/cmd)

2000 1000

Depth. km

~1 Order Improvement in Precision o o R . | - . Earth's Center, 365 GPa
Over Previous IXS RES & 14 J L= 6000~8000 K

Needed: Lab measurements relating T, Density & Composition to V
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Diamond Anvil Cells IXS Data for Iron at 167 GPa [

P >200 GPa So far with IXS: : i v : -

T >2000K (Laser Heating) AR A Std Cell T 111 Very clear iron peak, but significant backgrounds
. raser S (Note diamond background can be tricky
-> careful orientation is required)

/_|

(A
b1
L1

AL L LS

Sine fit gives velocity (V)

T

Diamonds: 2 x 1.5mm Thk

Intensity [a.u)

Also Gasket & Pressure Medium
P increases -> Smaller Sample & Gasket Hole
Cell with Internal Heating

Small samples, Signal-low, Poor signal to noise

Energy [meV]
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ﬁ Sound Velocity in Pure Iron Novel Uses of The Phonon Intensity <

RIKZH

Birch's Law: Approximate Linear relation between density and velocity.

SIMPLE, in pririciple Phonon Cross Section:

t ; HT
PREM
Shock
Vocoata=®!" < (Q) wi(Q) o
Sha and Cohen . Cl . o o - p "Xy -
x Maootal kT SP8 is faster than ESRF DN, Nl i | & T Q-ey, ¢ %q-qx
* and similar to APS ‘
il I ESRF recently became
AL

ga} faster than.before

P-wave velocity, km/sec

1 2
Pure Tron to 170 GPa [ n,, +1 Slo-wy) + M, dw+awy, :I]

Ohtani et al, submitted

2e : T-Dependence: o .- . .
1 12 3 APS is sensitive. In principle, the phonon polarization is complex, but in some cases; it can be
SP8 and ESRF are not. simple, or smooth, letting one get information about

Density, g/cm®
e.g. the form factor from frequency resolved measurements or

Discussion needed: Diamond? Sine fit? Other?

8]  Using Thermal Diffuse Scattering R

(TDS) Atomic -> Electronic Dynamics

Phonon Intensity ~ 1/w -> In simple materials can use intensity to
gain insight about phonon frequencies Atomic
Long history... at least to Colella and Batterman PR 1970 (Va dispersion) s

More sensitive -> See Kohn anomalies when Correlated atomic motions (phonons) play a role in many phenomena
phOhOhS span the Fermi surface (e.g. superconductivity, COWs, phase transitions, thermoelectricity, magneto-elastic phenomena etc)

Electronic excitations similar: Orbitons...?

ZN,  Bosak et al, PRL 2009

Calcilated Orbiton Dispersion
1 electron->Very Weak Ishihara

TDS from Silicon

Holt, et al, PRL 1999




d-d Excitations in NiO

First something simple...

Long and Distinguished History

First (resonant) IXS experiments (Kao, et al)

Non-Resonant IXS, AE~300 meV

Larson, et al., PRL 99 (2007) 026401 Cai, et al, BL12XU, Unpublished

ﬁ First High Resolution Experiment

" 7 meV resolution at 1800 meV energy transfer

Cleaner “Optical Spectroscopy” due to
1. Non-resonant interaction S(Q,w)
2. Large Q & Q dependence
-> selects multipole order.
-> atomic correlations.

Linewidth -> information about environment
Spin fluctuations
Lattice interactions (Franck-Condon)

d-d Excitation in NiO
3 Days/Spectrum

Relevance to correlated materials...
Gaps (Mott, Charge Transfer, SC) and
Mid-IR band in high Tcs
f-electron transitions, etc

Orbitals

Scattered
Intensity

NiO Co0

Powell and Spicer

Cluster calculations
Haverkort, et al PRL (2007)

Hiraoka et al
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“Momentum Resolved Optical

‘Spectroscopy”

Conventional Optical  Tnformation on electronic energy levels but without
Spectroscopy: information on inter-atomic correlations or

(Absorption, Reflectivity) afomic sfructure

With x-rays, the short wavelength allows direct probe at atomic scale:

Resonant experiment vs non-resonant IXS expef'imen’r.
Non-resonant experiment is simpler and can have higher resolution
.. but badly flux limited

Calculated Orbiton
Dispersion

Khaliullin & Okamoto (PRL 2002)

Still Some Debate: . Ishihara (PRB 2004)
Energy scale?
Coupling to phonons and/or spin?
Linewidth small or large?

van den Brink-(PRL 2001)

SPring..8
The Orbiton Story
RIKEH

(One, mostly experimental, viewpoint)

Orbital order exists -> there should be an equivalent excitation

Essential picture is of a correlated d-d excitation - change in electronic
wave function on one atom is correlated with change at other atoms.

But some dissent:

Two phonon peak?
Gruninger (n), Kruger (prl), Marin-Carron (prl)

And also corroboration

Raman spectra from different materials

SPring..8

Resonant IXS (RIXS) >

Soft x-ray RIXS (SRIXS)
Ulrich, Ament, et al (PRL 2009)

K-Edge RIXS (d-d excitations) AT SLS/ADDRESS
L;in YTiO3, 55 meV Resolution at 450 eV

LaMnO; Inami, et al (pib 2003)

Resolution Improving: 2-orbiton signal at 250 meV...

1000 -> 250 meV -> 70 meV




Recent Work

LETTER May, 2012

Spin-orbital separation in the
i-one-dim

Li § w1l
8,z 16°
7,93 keV
059 o.u
DORIS 1

INTENSITY (counts)

X ) . . ENERGY SHIFT (eV)
Fig. 1. Raw experimental data for Li single crystal obtained in thepersian compensating case. The X-ray

Raman spectrum (XRS) has an edge like onset at the binding energy of the Li K-clectron of about $5¢V, E A

and C denote the quasiclastically scattered Rayleigh line and the S(g, w) profile from the valence electrons, re-

spectively

Nagasawa, et al, J. Phys. Soc. Jpn. 58 (1989) pp. 710-717

Tohji&Udagawa, PRB 39 (1989) 7590
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X-Ray Raman Scattering Nuclear Inelastic Scattering

First-Demonstrated (Clearly) by Seto et al 1995
Suppose you would like to measure the structure of the oxygen k- '

edge (at 532 eV) of a sample inside of complex sample environment

Massbauer Resonances Exist in Different Nuclei...
Diamond:

sotope Transition energy (keV) Lifetime (ns)
aps < 0.5 um 500 eV .
lips ~ 2 mm 10 keV

Natural abundance (%)

Supercritical
Water

Ishikawa, et al,
Submitted

Resonances have relatively long lifetimes so that if onehas a
pulsed source, one.can separate the nuclear scattering by using a
J Tetrohydrofuran Clathrate

g . fast time resolving detector.
#'  Conrad, et al; PRL (2009) 218301 . : /
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_ NIS Setup ) . NIS: Good and Bad
Use a narrow bandwidth monochormator

. Eree
The nucelar resonance becomes the analyzer. . E honon

= Eres Important things to note:
- E 1. Element and isotope selective.
2. Gives Projected Density of states NOT Dispersion
(But it does this nearly perfectly)
AE~meV Sample

3. Resolution given only by monochromator
Forward Detegtor (analyzer is ~ueV)
" High Heat Load i ' (NFS) .

Monochromator

Easier optics but setup not optimized
High Resolution

(compensated by large cross section)
Monochromator Incoherent Detector r
(NIS)
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Surfaces by NIS

The large nuclear cross section allows sensitivity even te
monolayers with relatively low backgrounds

In-Situ Deposition
© ESkF 57Fe on W(110)

57Fe with %6Fe
Stankov et al, JP 2010 Stankov et al PRL (2007)

Slezak et al PRL 2007

Also: Multilayers - Cuenya et al, PRB 2008

Compton Scattering
For very large Q and AE<<E one can take
m Il dp.dp, p(p,=p,) From Shmkei

I(p,)

Ie: Compton scattering projects
out the electron momentum
"density.

Typical of incoherent scattering...
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Example (NRvs/NIS/NRIXS) In Biology

S. Cramer, et al, JACS

Measurement to determine the products of biological reactions via site-selective
vibrational spectroscopy and comparison against calcs and model compound

A compound in the nitrogen cycle...

Is X present? How many irons?

SERifg-8
Three-Dimensional Momentum Density
) Reconstruction

Note: a bulk probe that is tolerant of sample imperfections.

From Y. Sakurai
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Fermi surfaces of Cu and Cu alloys Hole Locations in La,_ Sr,CuO, N

Sakurai, et al, Science 2011

Parent vs Optimal Doping:
Holes in ZR singlet state

Optimal vs Overdoped
Holes in Cu dz2 orbital

Cu-15.8at%Al Cu-27.5at%Pd
Determined by Compton scattering at KEK-AR

J. Kwiatkowska et al., Phys. Rev. B 70, 075106 (2005)

Reducing the Two-Theta Arm Size

Dispersion Compensation: Houtari, et al JSR (2005)

Crystal Cube Array
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Animation
D. Ishikawa

5 meV at 16 keV
R=2m, p=0.1 -> d=50 mm
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ﬁ Temperature Gradient Analyzer A Nano-Volt Spectrometer

(Ishikawa & Baron, JSR 2010)

Rayleigh Scattering of Mossbauer Radiation (RSSMR)

Short Arm: DT: 1 o0 10C

Longer Arm: DT~0.1C 1=150 to 200mm

"~ meV resolution at 3m ~5 meV at 1Im Masuda; Mitsui, Seto, et al, TTAP (2008, 2009)

—iot

Usual Measurement is a s | dt e
two-point correlation function:

(A) Autocorrelation at One Q

(B) Cross-Correlation, Different Q




A Next Generation Beamline N

IXS BS?ZVVQJSL[}?MEOX?'“T'O” Dramatic Improvement to Source and Spectrometer
allows new science...

New Field: Electronic excitations

New ___ .. i _
Beamline , 107 ) Also many expts now flux limited:
' : Phonons in complex materials
EnL ; — ] Extrémeenvironments (HT, HP liquids)
Present (~$18, j High pressure DAC work (Geology)
Status : i Excitations in metal glasses

Source & BL T Iy ) * Super-cooled liquids
Improvements Machine Barrier
1
\ 2 - =
i ¢ " g

Effective Flux [10'/s/0.1%BW]

\ Expected
ESRF/ ' Upgrades

1995 2000 2005 2010 2015 2020
Year

Improvements
Flux On Sample: x10
Parallelization: x3
Small Spot Size: x5

SPring..8 SPring..8
F. . ) C=) Fl Medium Resolution Spectrometer C=>
Quantum NanoDynamics Beamline RIKEH

(BL43LXV)

Based on a 2m Arm & 3x3 Array Of Analzyers:
. . Energy resolution: ~10 to 100 meV (mono dependent
High resolution spectrometer: <1 to 6 meV  Medium resolution: 10-100 meV Anal?Zers at Si(888) at 15.816 keV (Eaduced mnsgompmd m) lower order)
10 m Arm, Good Q Resolution, to 12 A1 2m Ar‘m., Large Q Accepta Dispersion compensation with Temperature Gradient
Large (42 element) analyzer array. Good tails using (888) keeps high resolution with large space near sample.
Maximum momentum transfer ~15 A1 (phase plate needed @ 90 Deg.)
Solid Angle Gain: x25/Analyzer compared to high res spectrometer

10m A
m Arm Commissioning o begin late in 2012

First Monochromatic Light: Sunday




SPring..8 BL43LXU: RIKEN Quantum NanoDynamics (RQD) Beamline
for High-Fe it Mo X-Ray Scatterng @

AQUR. Barmn, by ues aperag oo jpepliat =115 b,
RIKEH

Thanks for Your Attention!
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