

Water-cool errors due	ed optics to a therm	are esser al bump	ntial: c	orrecti	ing sl	ope
	V201 Plane - Slope Erro	rs (µRad)	over full mirr	or substrate	over clear	aperture
	Internally cashed Glaboo, 10K W	/w=%)	60eV	20eV	60eV	20eV
	Maximum Tangential Slope Error Average Tangential Slope Error		28.2	61.3	28.2	61.3
R-M			2.4	4.9	3.0	6.1
Maile I	RMS Tangent	ial Slope Error	3.3	7.0	4.4	9.3
W	Maximum Sa	gittal Slope Error	36.4	75.1	36.4	75.1
	Average Sagi	tal Slope Error	7,3	15.3	13.9	29.2
	RMS Sagittal	Slope Error	12.2	25.6	18.0	38.0
Body plate showing pockets	error					
for cooling channels	Tangential slope error					
	Sagittal slope error	=				
	Courtesy of T	ony Warwick (AL	S)	CheironSo	chool_Oct201	2_Lec2.ppt

Facility	ALS	New Subaru	APS	SP-8
Electron energy	1.90 GeV	1.00 GeV	7.00 GeV	8.00 GeV
Y	3720	1957	13,700	15,700
Current (mA)	400	100	100	100
Circumference (m)	197	119	1100	1440
RF frequency (MHz)	500	500	352	509
Pulse duration (FWHM) (ps)	35-70	26	100	120
Bending Magnet Radiation:				
Bending magnet field (T)	1.27	1.03	0.599	0.679
Critical photon energy (keV)	3.05	0.685	19.5	28.9
Critical photon wavelength	0.407 nm	1.81 nm	0.636 Å	0.429 Å
Bending magnet sources	24	4	35	23
Unchulator Radiation:				
Number of straight sections	12	4	40	48
Undulator period (typical) (cm)	5.00	5.40	3.30	3.20
Number of periods	89	200	72	140
Photon energy $(K = 1, n = 1)$	457 eV	117 eV	9.40 keV	12.7 keV
Photon wavelength ($K = 1, n = 1$)	2.71 nm	10.6 nm	1.32 A	0.979 A
Tuning range $(n = 1)$	230-620 eV	43-170 eV	3.5-12 keV	4.7-19 keV
Tuning range $(n = 3)$	690-1800 eV	130-500 eV	10-38 keV	16-51 keV
Central cone half-angle $(K = 1)$	35 µrad	44 µrad	11 µrad	6.6 µrad
Power in central cone $(K = 1, n = 1)$ (W)	2.3	0.15	12	16
Flux in central cone (photons/s)	3.1×10^{10}	7.9×10^{15}	7.9×10^{15}	7.9×10^{15}
$\sigma_x, \sigma_y (\mu m)$	260, 16	450, 220	320, 50	380, 6.8
σ'_{x}, σ'_{y} (µrad)	23, 3.9	89, 18	23, 7	16, 1.8
Brightness $(K = 1, n = 1)^n$	a a	1.7	4 0 · · · 1018	1.0
[(photons/s)/mm* · mrad* · (0.1%BW)]	2.3 × 10 ¹⁹	1.7 × 10"	5.9 × 10 ¹⁰	1.8 × 10-0
Total power ($K = 1$, all n , all θ) (W)	83	27	350	2,000
Other undulator periods (cm)	3.65, 8.00, 10.0	7.60	2.70, 5.50, 12.8	2.4, 10.0, 3.7, 12.0
Wiggler Radiation:				
Wiggler period (typical) (cm)	16.0		8.5	12.0
Number of periods	19		28	37
Magnetic field (maximum) (T)	2.1		1.0	1.0
K (maximum)	32		7.9	11
Critical photon energy (keV)	5.1		33	43
Critical photon wavelength	0.24 nm		0.38 A	0.29 A

nd	ulators, FELs and coherence
• 5	spatial coherence
•]	Temporal coherence
• 1	Partial coherence
• 1	full coherence
• 5	Spatial filtering
• 1	Jncorrelated emitters
• (Correlated emitters
• 7	Frue phase coherence and mode control
• 1	asers, amplified spontaneous emission (ASE) and mode control
• 1	Undulator radiation
• 5	SASE FEL 100 ⁺ fsec soft/hard x-rays
• 5	Seeded FEL true phase coherent x-rays
•]	ligh harmonic generation (HHG) compact fsec/asec EUV
٠J	EUV lasers and laser seeded HHG
• /	Applications with uncorrelated emitters
• /	Applications with correlated emitters
	UndertraffEaGut at

Undulators and FELs	
N S N S $d\mathbf{p} = -e(\mathbf{E}' + \mathbf{v} \times \mathbf{B})$ S N S N <u>Undulator</u> – uncorrelated electron positions, radiated fields uncorrelated, intensities add, limited coherence, power ~ N.	
N S N S N S N S N	
S N S N S N S	
Free Electron Laser (FEL) – very long undulator, electrons are "microbunched" by their own radiated fields into strongly correlated waves of electrons, all radiated electric fields now add, spatially coherent, power ~ N ² $\frac{d\mathbf{p}}{dt} = -e(\mathbf{E} + \mathbf{v} \times \mathbf{B})$	
UndulatorsAndFELs2 ai CheironSchool_Sept2	012_Lec2.ppt 44

Seeded F	EL
	$N = S = N = S$ $(I) = -e(E + v \times B)$ $(I) $
w	N S N S N S N S N
seed pulse	S N S N S N S
	Free Electron Laser (FEL) – very long undulator, electrons are "microbunched" by their own radiated fields into strongly correlated waves of electrons, all radiated electric fields now add, spatially coherent, power ~ N2 $\frac{d\mathbf{p}}{dt} = -e(\mathbf{E} + \mathbf{v} \times \mathbf{B})$ Second generation x-ray FELs.
	CheironSchool Sept2012 Lec2.pl

Parameters	Flash FEL (Hamburg)	Fermi (Trieste)	LCLS (Stanford, 2010)	SACLA (Harima, 2011)	EU XFEL (Hamburg, 2015)	
Ee	230	1.2 GeV	13.6 GeV	8 GeV	17.5 GeV	
Y	450/2000	2300	26,600	15,700	35,000	
λu	27.3 mm	65 mm	30 mm	18 mm	35.6 mm	
N	500	216	3700	277	4000	
Lu	30 m	14 m	112 m	81 m	200 m	
ħω	50-200 eV	30-120 eV	1-10 keV	15 keV	4-12 keV	
λ/Δλ	100	1000	350	200	1000	
Δτ	30 fsec	100 fsec	160 fsec	100 fsec	100 fsec	
J (ph/pulse)	3×10^{12}	1014	1012	7×10^{11}	1014	
rep rate	1 Hz	10 Hz	120 Hz	60 Hz	27 kHz	
î	1.3 kA	500 A	3.4 kA	3 kA	5 kA	
Ŷ	0.3 GW	1 GW	8 GW	4 GW	20-100 GW	
L	260 m	200 m	5 km	710 m	3.4 km	
Polarization	linear	variable	linear	linear	variable	
Mode	SASE	Seeded (3to Ti: saphire)	SASE	SASE	SASE	

